

IMPORTANT NOTE

This plan was prepared to accompany an application to Rockhampton Regional Council and should not be used for any other purpose.

The dimensions and areas shown hereon are subject to field survey and also to the requirements of council and any other authority which may have requirements under any relevant legislation.

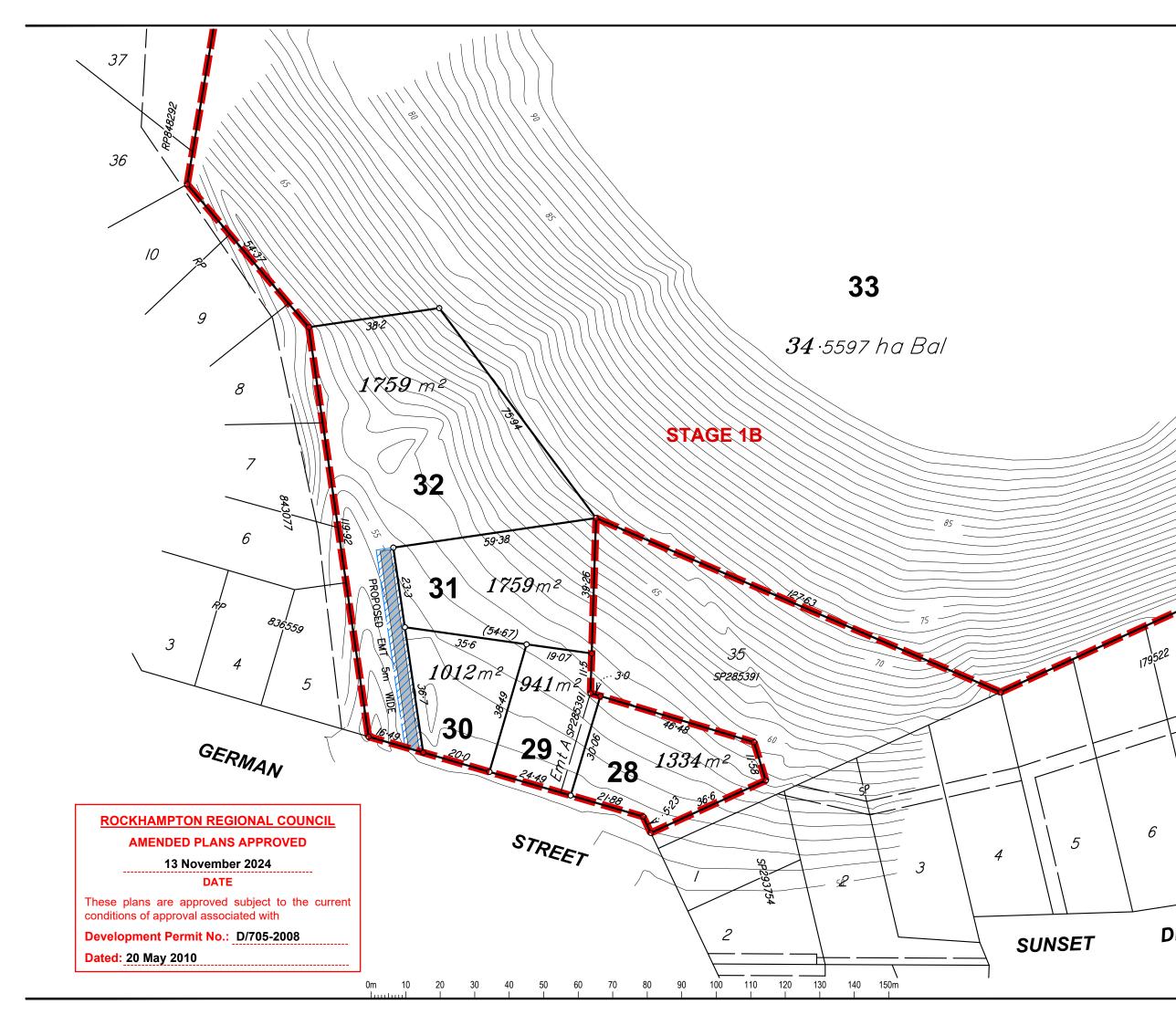
In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land.

This note is an integral part of this plan.

client

R. & L. Perren

^{project} 237 German Street (& Sunset Drive) Norman Gardens ^{plan of} Reconfiguration Plan 1 Lot into 10 Lots


(With QLD Globe Underlay)

μu

Lot 200 on SP285391

Rockhampton Regional Council

_			
issue	date	details	authorised
Α	23-08-2024	Initial Issue	RJKF
-	-	-	-
create	d		
		capricornsurveygr	bo quo
		SUBVEYING & PLANNING SO	
			Loniono
07 4927	5199 recepti	ion@csgcq.com.au 132 Victoria Parade, Rockhan	npton QLD 4700
scale			datum
1:3	000 @	A3 AHD 1m Co	ntours
sheet	<u> </u>		cad file
	-	0000.04	
1 of	13	9362-01-	RUL-A
plan n	0.		issue
02	62 0	1-ROL	۸
30	02-0		A

IMPORTANT NOTE

This plan was prepared to accompany an application to Rockhampton Regional Council and should not be used for any other purpose.

The dimensions and areas shown hereon are subject to field survey and also to the requirements of council and any other authority which may have requirements under any relevant legislation.

In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land.

This note is an integral part of this plan.

client

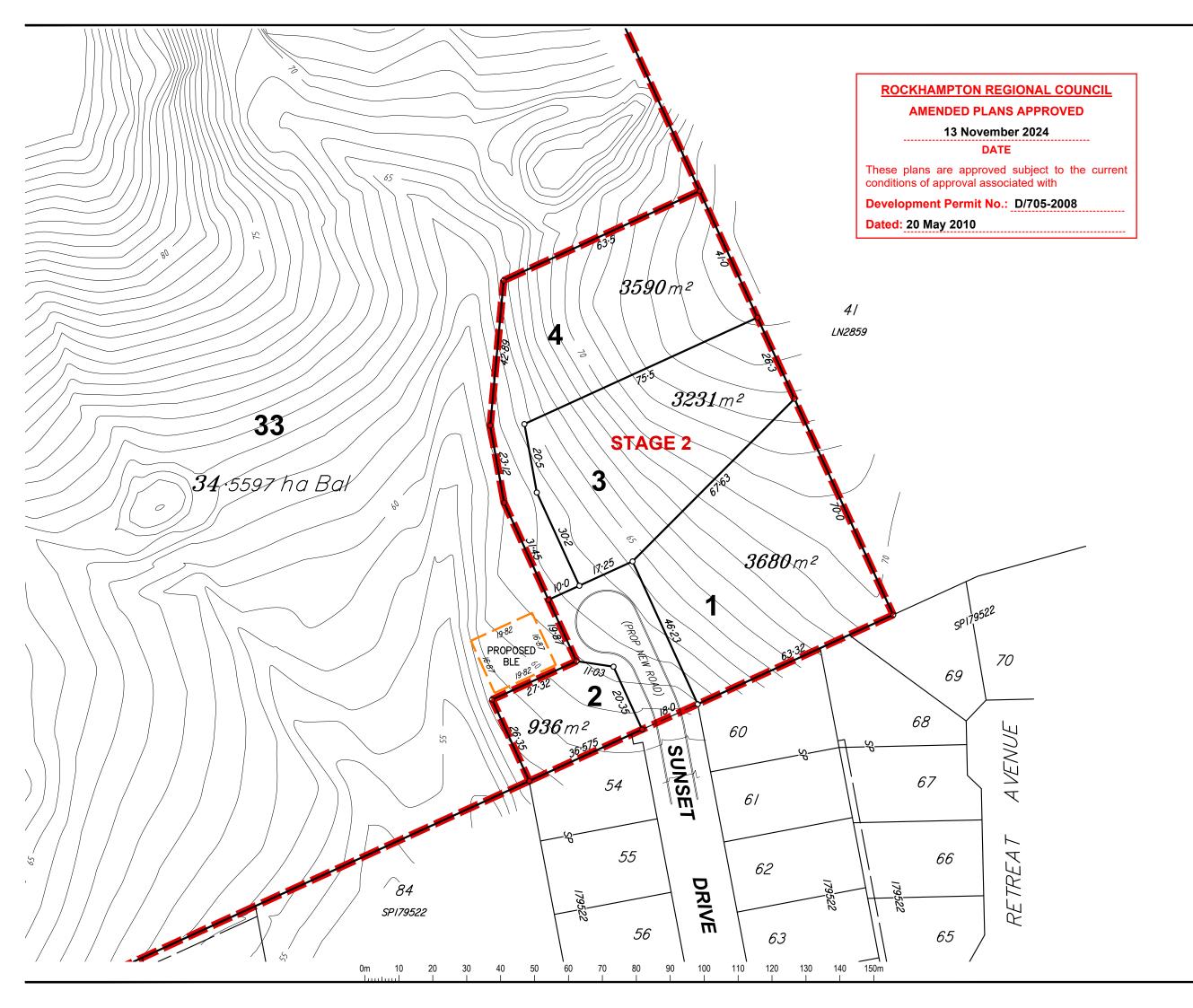
laa

7

R. & L. Perren

237 German Street (& Sunset Drive) Norman Gardens

Reconfiguration Plan 1 Lot into 10 Lots (With QLD Globe Underlay)


Lot 200 on SP285391

Rockhampton Regional Council

issue	date	details	authori
Α	23-08-2024	Initial Issue	RJK
-	-	-	-
create	ed	capricornsurvey	group
create	ed	Capricornsurvey	
			SOLUTIC

DRIVE

9362-01-RO	<u>L A</u>
plan no.	issue
2 of 3	9362-01-ROL-A
sheet no.	cad file
1:1000 @ A3	AHD 1m Contours
scale	datum

IMPORTANT NOTE

This plan was prepared to accompany an application to Rockhampton Regional Council and should not be used for any other purpose.

The dimensions and areas shown hereon are subject to field survey and also to the requirements of council and any other authority which may have requirements under any relevant legislation.

In particular, no reliance should be placed on the information on this plan for any financial dealings involving the land.

This note is an integral part of this plan.

client

R. & L. Perren

^{project} 237 German Street (& Sunset Drive) Norman Gardens ^{plan of} Reconfiguration Plan 1 Lot into 10 Lots (With QLD Globe Underlay)

rpc

Lot 200 on SP285391

Rockhampton Regional Council

issue	date	details	authorised			
Α	23-08-2024	Initial Issue	RJKF			
-	-	-	-			
create	d					
		capricornsurveygr	oupca			
		SURVEYING & PLANNING SO				
	K					
07 4927	5199 recept	on@csgcq.com.au 132 Victoria Parade, Rockhan	pton QLD 4700			
scale			datum			
1:10	000 @	A3 AHD 1m Co	ntours			
sheet	•		cad file			
3 of	F 3	9362-01-				
		5502-01-	issue			
plan n			Issue			
-93	9362-01-ROL A					
		-				

Stormwater Drainage Strategy

1

Naturelands Estate

Proposed 36 Lot Residential Subdivision On German Street and Sunset Drive Rockhampton.

Prepared for J H G Nominees Pty Ltd.

ROCKHAMPTON REGIONAL COUNCIL These plans are approved subject to the current conditions of approval associated with Development Permit No. J) 705 2008 Dates 20/05/2010

0880708 Rev B January 2010

Stormwater Drainage Strategy

Naturelands Estate

Proposed 36 Lot Residential Subdivision On German Street & Sunset Drive, Rockhampton.

For J H G Nominees Pty Ltd

Submission to:

Rockhampton Regional Council (Rockhampton Office) PO Box 1860 Rockhampton Qld 4700

Prepared by:

McMurtrie Consulting Engineers 63 Charles St North Rockhampton, Qld 4701

Rev.	Description	Sig.	Date	
В	Response to RRC RFI	MVVVV	10.12.09	
Α	Submitted for Approval	MWW	05.06.09	
	Revisions			

Authorised:

Ian McMurtrie RPEQ 1347 For McMurtrie Consulting Engineers.

.....

Revision B

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	CALCULATION PROCESS	2
3.0	RESULTS SUMMARY	3
4.0	CONCLUSION	8
5.0	ATTACHMENTS	10

1.0 INTRODUCTION

This Stormwater Drainage Strategy has been amended in accordance with Information Request of 17 August 2009 (D-R/2008-705) and in response to meeting minutes prepared by Michael Donaldson received 13 October 2009. Calculations prepared on behalf of our Client are also in response to Councils original Information Request of 22 October 2008 (D-705/2008). The following report has been prepared to detail an overall drainage strategy encompassing the entire stormwater catchment area contributing to stormwater flows on the subject site. Further to the Reconfiguration of Lot Application submitted to Rockhampton Regional Council in May 2008, major (Q_{100}) and minor (Q_{10}) rainfall event peak discharges for the pre-development and post-development scenarios have been presented.

2.0 CALCULATION PROCESS

Pre-development and Post Development calculations have been prepared using the Rational Method:

$$Q = K.C.I.A$$

In accordance with *QUDM* 4.06.6 Overland Flow, time of concentration (t) has been calculated for Sheet Flow and Concentrated Flow using Friends Equation and Bransby-Williams Equation respectively:

t=(107n x L ^{1/3}) / s ^{1/5}	Friends Equation
t=58L/(A ^{0.1} x S ^{0.2})	Bransby-Williams Equation

As a result of site inspections and DTM survey, Sheet Flow has been adopted for a maximum of 50m and accounts for a Horton's Roughness Coefficient for *Sparse Vegetation*.

Open channel drainage capacity has been calculated using Mannings Formula:

Existing concrete pipe capacity has been calculated using Colebrook-White formula:

 $1/\sqrt{f}$ = -2log10 (k/3.7D + 2.51/Re. \sqrt{f}

Where k = 0.006

Existing cross drainage structure capacity has been calculated using CulvetW software.

3.0 RESULTS SUMMARY

The following results summary represents pre-development and postdevelopment catchment discharge. All calculations and catchment plans can be referred to in Attachment A.

Stage 1: Proposed 7 Lots on German Street

(Refer Attachment A for all Stage 1 calculations and catchments)

 Pre-development Q₁₀₀ discharge from Catchment 7 to existing 1200 RCP cross drainage under German Street has been calculated at 8.0m³/s. Refer Attachment A - Catchment 7 calculations.

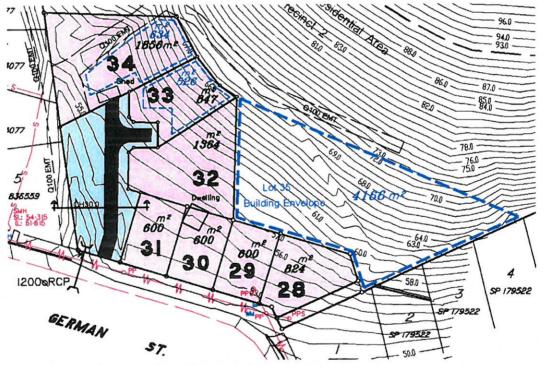
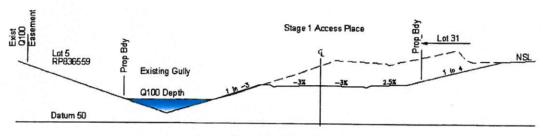



Figure 1: Image taken from Schlencker Surveying Drawing 2112-11 Sh4.

2. Using Colebrook-White's formula, the existing 1200 RCP at 3% grade has an existing capacity of approx 8.7m³/s. This figure is conservative as it is demonstrates pipes flowing full but not under head.

- 3. The proposed stage 1 development will provide minor intensification of stormwater runoff as only Lots 32, 33 and 34 will discharge to the existing 1200 RCP. Lots 28 to 31 7 35 will discharge directly to German Street via kerb adaptor. The Post Development net discharge to the existing 1200 RCP is increased by only 0.2m³/s to 8.2m³/s. Refer Attachment A Catchment 8.
- Depth of flow for the existing gully (post development) has been calculated at 810mm. Refer Attachment A - Mannings Calculations: Stage 1 Post Development Discharge and Figure 1 and 2.

Chainage 30.000

Figure 2: Cross Section through access to Stage 1.

- Existing 1200mm cross drainage structures (under German Street) is suitably sized to cater for the proposed development. No amendment to the existing downstream structures is required.
- With construction of proposed diversion drain at the back of Lots 28, 29, 32, 33 & 34, there will be no impact or modification to existing Catchment 8a. Catchment 8c also remains unchanged post development.

Stages 2 and 3: Proposed 27 Lots off Sunset Drive:

(Refer Attachment B for all Stage 1 calculations and catchments)

Lot 14 will maintain a trafficable access during a Q₁₀₀ event with the installation of 900 x 750 RCBC. Refer *Attachment B - Catchment 1* calculations and CulvertW Design Case No 1 detailing trafficable access during a Q₁₀₀ storm event and Figure 3 below.

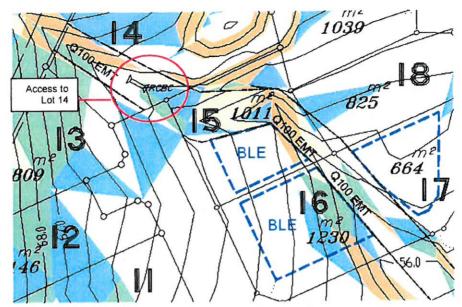


Figure 3: Image taken from Schlencker Surveying drawing 2112-11 Sh3

- Major 'western' gully crossing will maintain trafficable cross over with the construction of 900 x 900 RCBC. Refer Catchment 2 calculations and CulvertW Design Case No 2 detailing trafficable cross over during a Q₁₀₀ storm event.
- Major 'eastern' gully crossing will maintain trafficable cross over with the construction of 2/750 x 750 RCBC. Refer Attachment B -Catchment 3 calculations and CulvertW design Case 3 and Image 4 below.
- The total pre-development catchment discharge (into the existing drainage reserve Lot 84 SP179522) is 20.2m³/s during a Q₁₀₀ event.
 Refer Attachment B Catchment 4 calculations and Image 4 below.

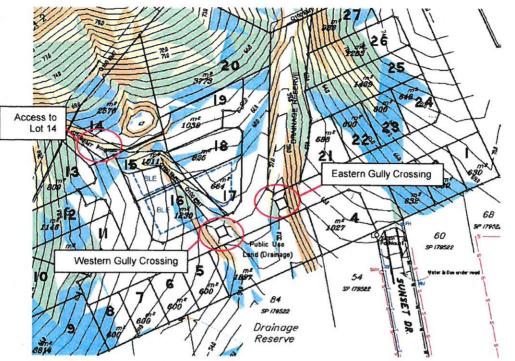


Figure 4: Image taken from Schlencker Surveying drawing 2112-11 Sh3.

- The total post-development catchment discharge (into the existing drainage reserve Lot 84 SP179522) for stages 2 & 3 during a Q₁₀₀ event is 23.4m³/s. This figure represents the Q₁₀₀ addition of discharge from Catchments 5, 6 and 6a.
- 12. The increase in Q₁₀₀ runoff for Stages 2 and 3 due to proposed urban development is 3.2m³/s
- 13. The post-development discharge from Catchment 6a into the existing concrete open channel is 1.2m³/s in a Q₁₀₀ event.
- The capacity of the existing concrete channel is 1.267m³/s and has sufficient capacity to cater for a Q₁₀₀ event. Refer Attachment B -Catchment 6a: Mannings Calculation.
- 15. Pre-development discharge to existing downstream Sunset Drive 3/2700 x 900 RCBC structure is 22.9m³/s (Refer Attachment F Drawing 030393/48). This pre-development discharge has been calculated from the addition of Catchments 4 and 5a (Refer Attachment B). CulvertW Design Case No 4 confirms sufficient existing culvert capacity (with only 94mm overtopping).

MCMUri

- 16. Proposed upstream development will increase discharge to the Sunset Drive 3/2700 x 900 RCBC in a Q₁₀₀ event to 26.2m³/s. This post-development discharge has been calculated from the addition of Catchments 5, 5a, 6 and 6a (Refer Attachment B).
- The existing Sunset Drive RCBC structure has sufficient capacity to cater for an increase of 3.2m³/s. Refer Attachment B - CulvertW Design Case No 5 confirming sufficient existing culvert capacity (with only 167mm overtopping).
- Cross sections through the open channel drainage reserve (Lot 84 SP179522) reveal that the depth of flow during pre-development Q₁₀₀ storm event is approximately 344mm. Refer Attachment C for Mannings calculations and cross sections.

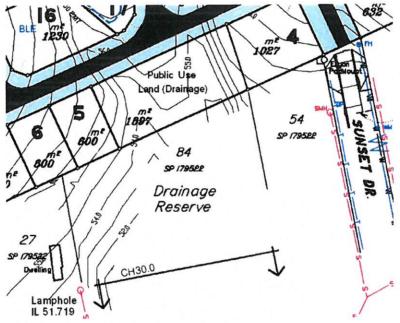


Image taken from Schlencker Surveying drawing 2112-11 Sh 5

19. For the same drainage reserve, the depth of flow would increase by less than 27mm in a post-development Q₁₀₀ event. The existing reserve is highly suitable to cater for any increase in post-development catchment discharge. An increase in depth of less than 27mm (during a Q₁₀₀ storm event) would provide no actionable nuisance to present of future downstream landowners.

4.0 CONCLUSION

Stage 1: Proposed 7 Lots on German Street:

Stage 1's lawful point of discharge in accordance with Section 3.02 of QUDM's 'two point test' is the existing 1200 RCP under German Street.

Modeling of stormwater flows in this report demonstrates that minor increase in runoff intensity as a result of proposed development is offset by the construction of open channel diversion drain resulting in a total Q100 runoff increase of only 0.2m³/s. All existing downstream stormwater structures will continue operating in their existing state.

Calculations shown herewith demonstrate that the existing 1200 RCP structure has been suitably sized for a fully developed upstream catchment.

Stages 2 and 3: Proposed 27 Lots off Sunset Drive:

Pre and Post-development stormwater discharge has been re-analysed for Stage 2 & 3 contributing catchments utilising both Sheet Flow and Concentrated Flow calculations.

Stage 2 & 3's lawful point of discharge in accordance with QUDM's 'two point test' is the existing drainage reserve Lot 84 SP179522.

While this Drainage Strategy reports an increase in stormwater runoff due to the proposed upstream development, the large cross sectional area of the existing drainage reserve equates to a 27mm increase in flow height during a Q100 storm event. A 27mm increase in height of discharge contained adequately within a dedicated drainage reserve is not foreseen to cause an actionable nuisance to present or future neighbouring property owners.

It is also confirmed through the attached calculations that $3/2700 \times 900$ RCBC has been designed to cater for a developed upstream catchment and has adequate capacity to cater for the proposed development. Post Development depth of flow across the existing culverts has been calculated at 167mm at 3.2m/s (Refer Culvert W Design Case 5). In accordance with QUDM Table 7.03.1 *Major System Design Criteria*, the product of flow depth and velocity is acceptable at ≤ 0.6 m/s.

It is with these calculations that it is confirmed that no onsite detention or modification to existing downstream drainage structures is required.

5.0 ATTACHMENTS

Attachment A	Stage 1 Calculations and Catchment Plans.
Attachment B	Stage 2 Calculations and Catchment Plans.
Attachment C	Typical Section and Mannings Calculations for Existing Drainage Reserve Lot 84 SP179522
Attachment D	Typical Section and Mannings Calculations for Proposed Lots 14 through 17.
Attachment E	Existing Stormwater Network Data Rockhampton Regional Council
Attachment F	Existing Downstream Development Graham Scott & Associates

Attachment

Catchment 7 Stage 1 Pre Development

Travel time (I) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below: **Overland Flow Theory** Sheet Flow t=(107n x L 1.3) / s Where: L = Length of slope (km) A = Area (ha) (Friend's Equation) S = Stream Path Slope (%) I = time of concentration 9min) Concentrated Flow (Bransby-Williams Equation) t=58L/(A01 x S02) Sub-Catchment 1: Sub-Catchment 2: Catchment Area 1862 m2 0.2 Ha Catchment Area 169823 m2 17.0 Ha Catchment Length Catchment Grade 50 m % Catchment Length 691 m 27 % 0.27 m/m Catchment Grade 0.27 m/m n (Hortons Value) Hortons Roughness (0.08 n (Hortons Value) 0.085 (OUDM 4.05.4) fortons Roughness Co t /OUDM Table 4.06.41 0.01 - 0.013 Concrete and Asphant Concrete and Asphant 0 01 - 0 013 Bare Sand Bare Sand Gravelled Surface Bare Clay-Loam Soil 0.012 - 0.030 Gravelled Surface 0.012 - 0.030 0.012 - 0.033 0.012 - 0.033 Bare Clay-Loam Soil Spanse Veglation Sparse Vegitation Short Grass Paddock 0 053 - 0 130 0 053 - 0 130 0.100 - 0.200 0.100 - 0 200 hort Grass Paddock Lawns 0.170 - 0.480 0.170 - 0.480 How Type Flow Type -Sheet Flow O Concentrated Flow O Sheet Flow Concentrated Flow Time of Concentration t = 17.3 mins Time of Concentration 1 = 15.6 mins 0.26 hours t = t = 0.29 hours 1 = Veloctly Check (v=d1): v = 0.05 m/s Veloctiy Check (v=d/t): v = 0.74 m/s Check Suitability Suitable Rational Method of Calculation. Q = K CIA 0.00278 (constant) С 0.56 l, 0.8 × 110 0.67 ls 0.95 x 110 0.7 l₁₀ 1 × 110 0.74 l₂₀ 1.05 × 110 0.81 I₅₀ 1.15 x I10 0.84 I100 1.2 × 110 Rainfall Intensity for Sub-Catchment 1 at 17.3 mins: Rainfall Intensity for Sub-Catchment 2 at 15.6 mins: ١, 64.23 mm/hr 67.20 mm/hr ١, Is. 107.19 mm/hr 112.33 mm/hr اح 110 122.11 mm/hr 110 128.06 mm/hr 120 142.03 mm/hr 149.03 mm/hr 120 150 169.24 mm/hr 1:0 177.70 mm/hr 1.00 190.71 mm/hr 1100 200.32 mm/hr Calculated Discharge Calculated Discharge 0.019 m¹/sec 0.037 m⁴/sec Q. Q, 3.527 m'/sec Q₁₀ Q₂₀ 0.044 m³/sec Q₁₀ Q₂₀ 4.232 m³/sec 0.054 m³/sec 5.171 m⁴/sec 050 0.071 m'/sec 6.753 m³/sec Q50 Q100 0.083 m³/sec Q 100 7.944 m³/sec Total Combined Discharge Q1 1.795 m³/sec Q5 3.564 m³/sec 4.276 m³/sec Q₁₀ 5.225 m³/sec Q.20 Qso 6.824 m³/sec Q100 8.027 m³/sec

0880708 Naturelands Estate on German Street Rockhampton

Catchment 8 Stage 1 Post Development

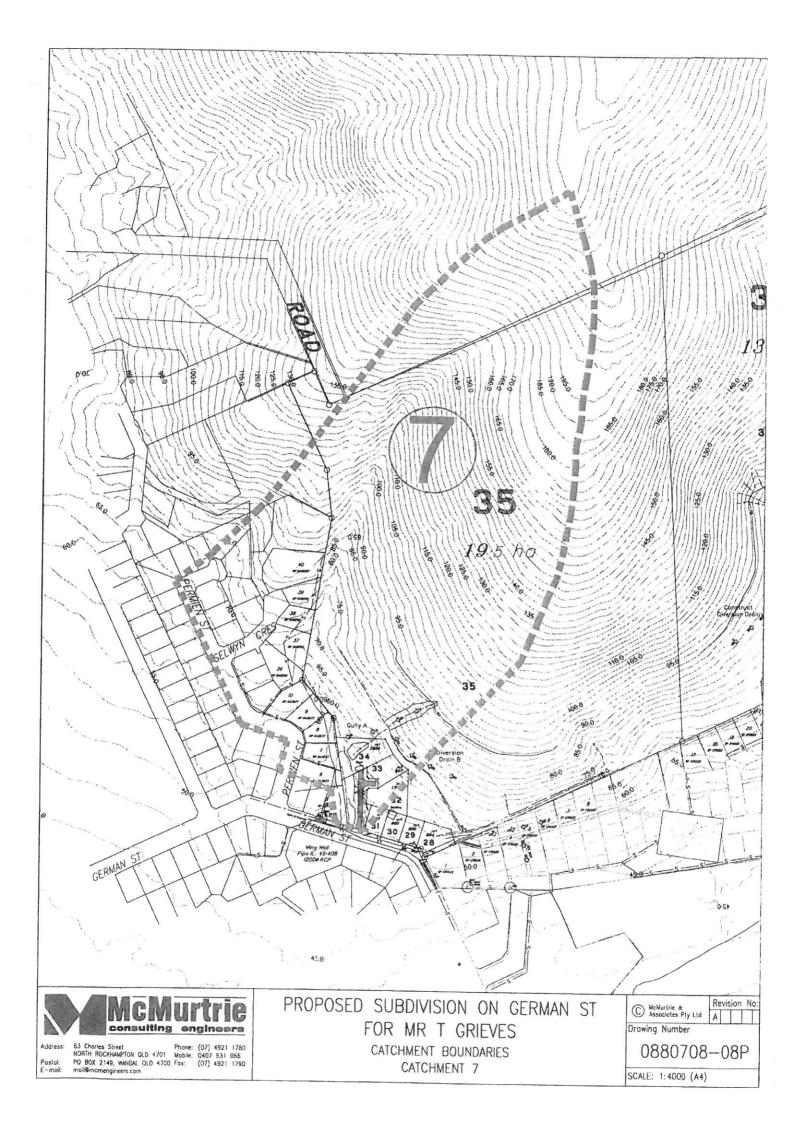
Sheet Flow	Overland	Flow Theory	
(Friend's Equation)	$t=(107n \times L^{1/3}) / s^{1/5}$	Where: L = Length of slope (kn A = Area (ha)	n)
		A = Area (na) S = Stream Path Slope	(^a b)
Concentrated Flow	t=58L/(A ⁰¹ x S ⁰²)	I = time of concentration	
(Bransby-Williams Equa	alion)		
Sub-Catchment 1:			
		Sub-Catchment	2:
Catchment Area 1862		Catchment Area	174141 m2 17.4 Ha
Catchment Length 50		Catchment Length	691 m
Catchment Grade 27 n (Hortons Value) 0.085	% 0.27 m/m	Catchment Grade	27 % 0.27 m/m
n (Hortons Value) 0.085 Hortons Roughness Coefficient (OUDM 1	able 4.06.41	n (Hortons Value)	0.085
Concrete and Asphant	0.01 - 0.013	Hortons Roughness Coeffic Concrete and Asphant	
Bare Sand	0.01 - 0.016	Bare Sand	0 01 - 0 013 0 01 - 0 016
Gravelled Surface	0.012 - 0.030	Gravelled Surface	0.012 - 0.030
Bare Clay-Loam Soil	0.012 - 0.033	Bare Clay-Loam Soil	0.012 - 0.033
Sparse Vegeaion Short Grass Paddock	0 053 - 0 130	Sparse Veptation	0.053 - 0.130
Lawns	0.100 - 0.200 0.170 - 0.480	Short Grass Paddock	0 100 - 0.200
	0	Lawns	0.170 - 0.480
- Flow Type		Flow Type	
Sheet Flow	O Concentrated Flow	O Sheet Flow	Concentrated Flow
		L	
Time of Concentration		Time of Concentration	
t = 17.3 mins t = 0.29 hours		t = 15.6	mins
- U.29 NOUIS		t = 0.26	6 hours
Veloctiy Check (v=d/t):		Veloctiy Check (v=d.1);	
v = 0.05 m/s	Check Suitability		m/s Suitable
		V 558 5	Control Contro
	Rational Method	f of Calculation:	
	Q = K	CIA	1
		,	1
	0.00278	(constant)	4
	0.00278	tronatanti	1
	c		1
	0.56 1	0.8 × I ₁₀	1
	0.67 l ₅	0.95 x I10	
	0.7 110	1 x l ₁₀	
	0.74 1:0	1.05 x 110	1
	0.81 lso	1.15 x I10	
	0.84 litto	1.2 × 110	
Rainfall Intensity for Sub-Catchmen	t 1 at		Rainfail Intensity for Sub-Catchment 2 at
17.3 mins:			15.6 mins:
l1 64.23 mm/hr			l ₁ 67.28 mm/hr
ls 107.19 mm/hr			
122.11 mm/hr			
l ₂₀ 142.03 mm/hr	J		1 ₁₀ 128.21 mm/hr
ls) 169.24 mm/hr			49.20 mm/hr
190.71 mm/hr			
100 100.11 101010			1 ₁₀₀ 200.55 mm/hr
Calculated Discharge			Calculated Discharce
0.019 m ³ /sec			Q ₁ 1.824 m ³ /sec
Qe 0.037 m ³ /sec	1		Q ₅ 3.620 m ³ /sec
Q ₁₀ 0.044 m ³ /sec			Q ₁₀ 4.345 m ³ /sec
Q ₂₀ 0.054 m ³ sec			Q ₂ , 5.309 m ² /sec
2 ₅₀ 0.071 m ³ /sec			Q _{b0} 6.933 m ³ /sec
Q ₁₀₀ 0.083 m ³ /sec			
	1		Q ₁₀₀ 8.155 m ³ /sec
	Total Combi	ned Discharge	
	Q ₁ 1.842	m ³ /sec	
	Q ₅ 3.657		
	•		
	Q ₁₀ 4.389 Q ₂₀ 5.363		
	Q ₂₀ 5.363 (Q ₅) 7.004 (
	Q ₁₀₀ 8.238 r		
	~ 100 0.200		

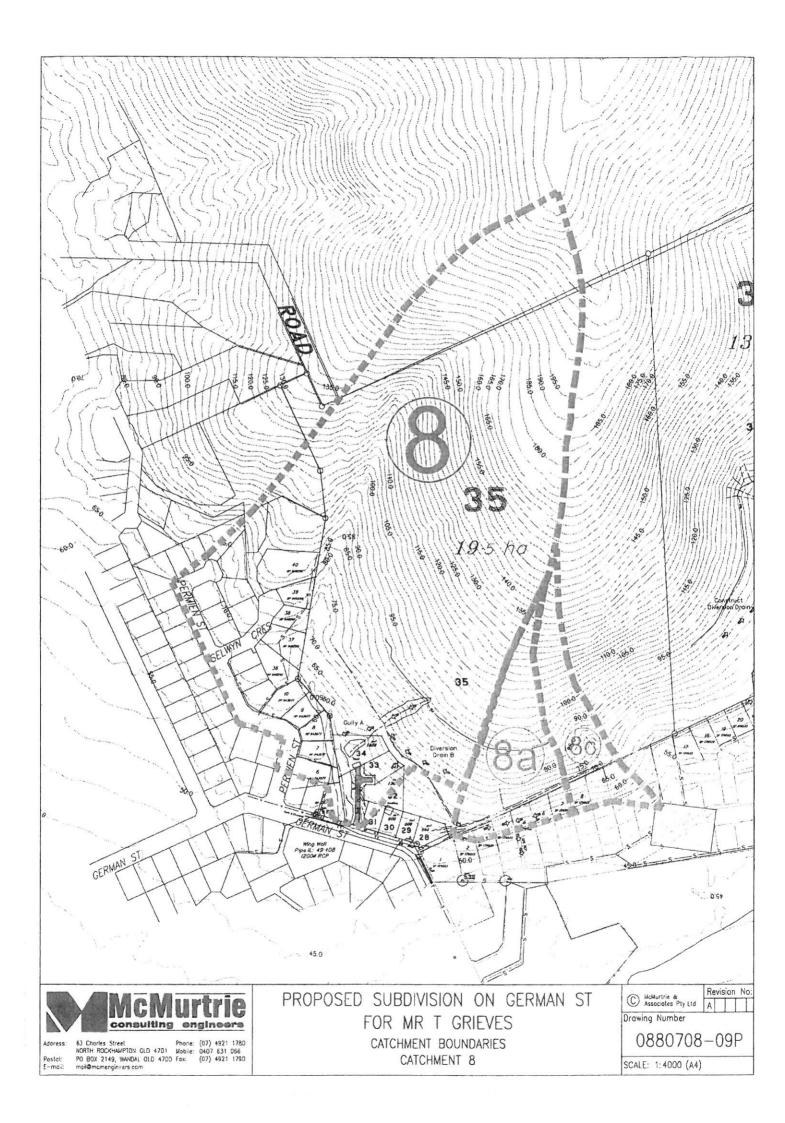
Travel time (t) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Catchment 8a Stage 1 Pre Development

Travel time (t) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Overlar	nd Flow Theory
Sheet Flow t=(107n x L ^{1/3}) / s ^{1/3} (Friend's Equation)	Where: L = Length of slope (km)
(menu's Equalion)	A = Area (ha)
Concentrated Flow t=58L/(A ⁰¹ x S ⁰²)	S = Stream Path Slope (%)
(Bransby-Williams Equation)	t = time of concentration 9min)
Sub-Catchment 1:	
	Sub-Catchment 2:
Catchment Area 422 m2 0.0 Ha	Catchment Area 16212 m2 1.6 Ha
Catchment Length 50 m Catchment Grade 27 % 0.27 m/m	Catchment Length 186 m
Catchment Grade 27 % 0.27 m/m n (Hortons Value) 0,1	Catchment Grade 27 % 0.27 m/m
Hortons Roughness Coefficient (QUDM Table 4.06.4)	n (Hortons Value) 0.1
Concrete and Asphant 0.01 - 0.013	Hortons Roughness Coefficient (QUDM Table 4.06.4)
Bare Sand 0.01 - 0.016	Concrete and Asphant 0 01 - 0.013 Bare Sand 0 01 - 0.015
Gravelled Surface 0.012 - 0.030	Bare Sand 0.01 - 0.016 Gravellad Surface 0.012 - 0.030
Bare Clay-Loam Soil 0 012 - 0.033 Sparse Veg2ation 0 053 - 0 130	Bare Clay-Loam Sol 0.012 - 0.033
	Sparse Vegtation 0 059 - 0.130
Enor Lates Paulout 0 100 - 0.200 Lawns 0.170 - 0.480	Short Grass Padocck 0 100 - 0 200
- Flow Type	Lawns 0.170 - 0.480
Sheet Flow O Concentrated Flow	Flow Type
	O Sheet Flow Concentrated Flow
Time of Concentration t = 20.4 mins t = 0.34 hours Veloctly Check (v=d/l): v = 0.04 m/s Check Suitability	Time of Concentration t = 5.3 mins t = 0.09 hours Veloctly Check (v=dA): v = 0.58 m/s Check Suitability
Rational Meth	hod of Calculation:
U	= K CIA
	K
0.0027	78 (constant)
0.56 1,	C
0.67 ls	0.8 × 1 ₁₀
0.7 l ₁₀	0.95 × 1 ₁₀
0.74 120	1 × I ₁₀ 1.05 × I ₁₀
0.81 l _{s0}	1.15 x I ₁₀
0.84 1100	1.2 x I ₁₀
Rainfall Intensity for Sub-Catchment 1 at	Rainfail Intensity for Sub-Catchment 2 at
20.4 mins:	5.3 mins;
l ₁ 59.69 mm/hr	l, 101.84 mm/hr
l ₅ 99.39 mm/hr	l ₁ 101.84 mm/hr l ₅ 172.19 mm/hr
l ₁₀ 113.12 mm/hr	l ₁₀ 197.17 mm/hr
l.a 131.47 mm/hr	1/2 230.42 mm/hr
l ₅₀ 156.52 mm/hr	l ₁₀ 275.90 mm/hr
ו ₁₀₀ 176.27 mm/hr	l ₁₀ 312.01 mm/hr
alculated Discharge	Colordation Director
0.004 m ³ /sec	Calculated Discharge
) _s 0.008 m ⁴ /sec	Q ₁ 0.257 m ⁴ /sec Q ₆ 0.516 m ¹ /sec
0.009 m ³ /sec	
0.011 m ³ /sec	Q ₁₀ 0.622 m ³ /sec Q _{.0} 0.763 m ³ /sec
50 0.015 m ⁴ /sec	Q ₂₀ 1.001 m ³ /sec
100 0.017 m ³ /sec	Q ₁₀₀ 1.181 m ³ /sec
Total Comb	bined Discharge
Q ₁ 0.261	1 m ³ /sec
	4 m ³ /sec
	1 m ³ /sec
	5 m ³ /sec
	3 m³/sec
Q ₅₀ 1.016) III /Sec


Q₁₀₀


1.199 m³/sec

Catchment 8c Stage 1 Pre & Post Development

Sheet Flow t=(10		Flow Theory Where: L = Length of slope (k	(m)
(Friend's Equation)		A = Area (ha)	ny -
		S = Stream Path Slop	
Concentrated Flow t=58 (Bransby-Williams Equation)	$J(A^{01} \times S^{02})$	t = time of concentrati	on 9min)
Sub-Catchment 1:		Sub-Catchment	
Catchment Area 520 m2 Catchment Length 50 m	0.1 Ha	Catchment Area	12763 m2 1.3 Ha
Catchment Grade 27 %	0.27 m/m	Catchment Length Catchment Grade	250 m
(Hortons Value) 0.1		n (Hortons Value)	27% 0.27 m/m
fortons Roughness Coefficient (OUDM Table 4.06.4)			ficient (OUDM Table 4.05.4)
oncrete and Asphant 0.01 - 0.013		Concrete and Asphant	3 01 - 0.013
are Sand 0.01 - 0.016 ravelled Surface 0.012 - 0.03		Bare Sand	0 01 - 0 016
ravelled Surface 0.012 - 0.03 are Clay-Loam Soil 0.012 - 0.03		Gravelled Surface	0 012 - 0 030
parse Vegitelion 0.053 - 0.13		Bare Clay-Loam Soil Sparse Veptation	0.012 - 0.033
hort Grass Padriock 0 100 - 0.20		Shori Grass Paddock	0.003 - 0.130 0.100 - 0.200
awns 0.170 - 0.481		Lawns	0.170 - 0.480
Flow Type		Flow Type	
Sheet Flow O Concentrated F	low.		
O concentrated P		O Sheet Flow	Concentrated Flow
ime of Concentration = 20.4 mins = 0.34 hours			3 mins 2 hours
eloctly Check (v=d/t):		Velocily Check (v=d/l):	
	Suitability		7 m/s Check Suitability
	Rational Method		
	Q = K	CIA	1
	K 0.00278 /		4
	0.00278 (consiant)	
	C		-1
	0.56 1	0.8 × 1,0	1
	0.67 15	0.95 x I10	
	0.7 t10	1 x l ₁₀	
	0.74 la	1.05 x l ₁₀	
	0.81 iso	1.15 x I ₁₀	
	0.84 l ₁₀₀	1.2 x I ₁₀	
ainfall Intensity for Sub-Catchment 1 at 20.4 mins:			Rainfall Intensity for Sub-Catchment 2 at
20.4 (18)3.			7.3 mins:
l, 59.69 mm/hr			l ₁ 90.52 mm/hr
l ₅ 99.39 mm/hr			l 153.04 mm/hr
1 ₁₀ 113.12 mm/hr			
l ₂₀ 131.47 mm.hr			
I ₅₀ 156.52 mm/hr			
l _{1c2} 176.27 mm/hr			
			l ₁₀₀ 277.43 mm/hr
alculated Discharge			Calculated Discharge
0.005 m ^{-/} sec			Q, 0.180 m ³ /sec
0.010 m ³ /sec	1		O. 0.361 m ³ /sec
0.011 m ³ /sec			Q ₁₀ 0.435 m ³ /sec
o 0.014 m³/sec			Q 0.534 m ³ /sec
o 0.018 m³/sec			Q ₅₀ 0.701 m ³ /sec
0.021 m ³ /sec	1		Q ₁₀₀ 0.827 m ³ /sec
			a - to the state of the state o
		ed Discharge	
	Q ₁ 0.185 m		
	Q ₅ 0.371 m		
	Q ₁₀ 0.447 m	o ³ /sec	
	Q ₂₀ 0.548 m	³ /sec	
	Q ₁₀ 0.719 m		
	Via 07190		
	Q ₁₀₀ 0.848 m		

Travel time (I) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Mannings Calculations Stage 1: Post-development Discharge

Existing Gully

Typical Section A-A

А WР R	2.07 5.36 0.386		Depth of F	Flow:	810 mm		
S	0.05	5%					
V =	1/n x R ^{2/3}	x S ^{1/2}					
n 1/n	0.03 33.333	(Manngings	: Grass Chanr	nel)			
R ^{2/3} S ^{1/2}	0.530 0.223607						
v	3.953 r	m/sec					
Q=VA							
Q	8.2 1	n³/sec					
	Ту	pical section t	aken approx 3	0m into Stag	e 1 Access Pla	ace	
4	 			5.11m			
-		1 in 3		0.81	1 in 3		-
Exist 0100 Easement	Lot 5 RP836559	Existing Gully Q100 Depth	110-2	Stage I Access	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2- Loi 31	NSL
			Chai	00.000			

Chainage 30.000

.

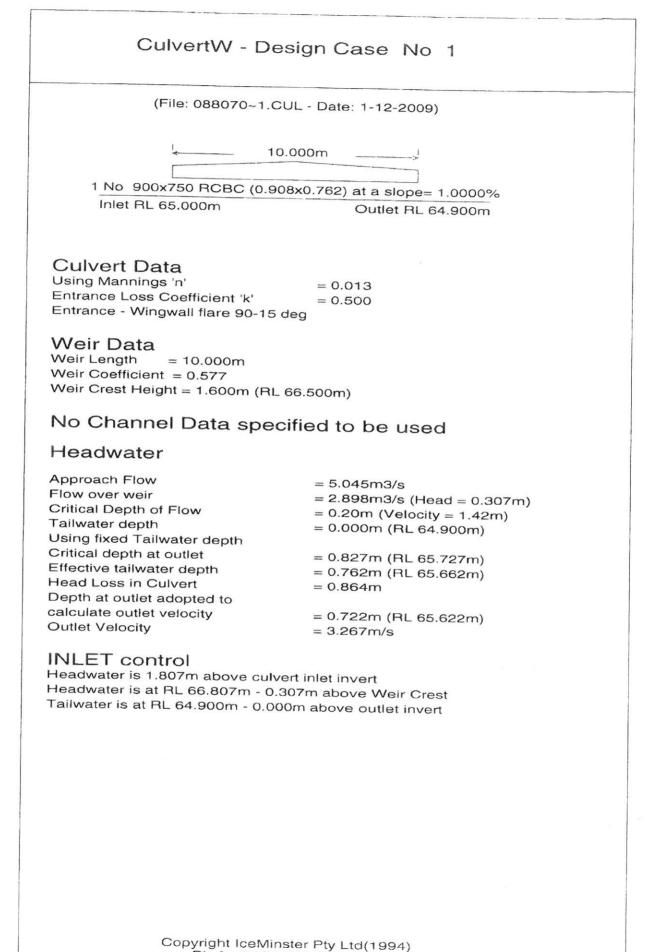
Attachment

B

Catchment 1 Access to Lot 14

Travel time (t) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

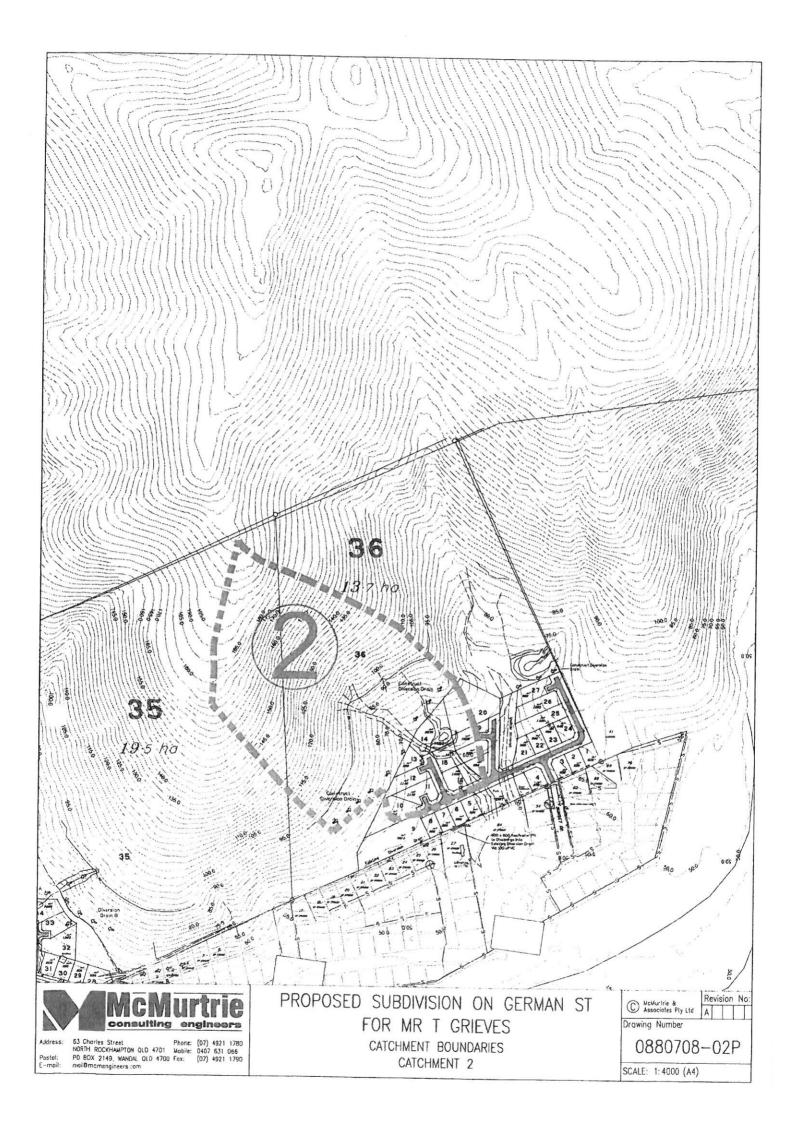
	Overlan	d Flow Theory		
Sheet Flow t	=(107n x L ^{1/3}) / s ^{1/5}	Where: L = Length of slope (k	m)	
(Friend's Equation)		A = Area (ha)		
Concentrated Flow		S = Stream Path Slop	e (%)	
(Bransby-Williams Equation)	=58L/(A ⁰¹ x S ⁰²)	I = time of concentrati	on 9min)	
Sub-Catchment 1:		Sub-Catchment		
		Cub-Catchinent	۷.	
Catchment Area 4263 m2	0.4 Ha	Catchment Area	73874 m2	7.4 Ha
Catchment Length 58 m		Catchment Length	300 m	7.4 Ha
Catchment Grade 35 %	0.35 m/m	Catchment Grade	35 %	0.35 m/m
n (Hortons Value) 0.1		n (Hortons Value)	0.1	
Hortons Roughness Coefficient (OUDM Table 4.05.4) Concrete and Asphant 0.01 - 0		Hortons Roughness Coef	ficient (QUDM Table 4.06.4)	
		Concrete and Asphant	001-0013	
		Bare Sand	0.01 - 0.016	
		Gravelled Surface	0.012 - 0.03	0
Sparse Vagitation 0.053		Bare Clay-Loam Soil	0.012 - 0.03	13
Short Grass Paddock 0 100-		Sparse Vegitation	0.053 - 0.13	
Lawns 0.170 -		Short Grass Paddock	0 100 - 0 20	
r Flow Type		Lawns	0.170 - 0.480	
		- How Type		
Sheet Flow O Concentra	ed Flow	O Sheet Flow	Concentrated	Flow
t = 0.34 hours Veloctly Check (v=d/t): v = 0.05 m/s Ch sdf;kasg	eck Sultability	Veloctiy Check (v=d/t): v = 0.7		Suitable
	Hational Meth	od of Calculation:		
	Q =	K CIA	-	
-				
H	0.0027	K 8 (constant)	_	
	0.0027	o (constant)		
F		С	1	
	0.56 1,	0.8 × I ₁₀	1	
	0.67 l ₅	0.95 x I ₁₀		
	0.7 l ₁₀	1 × 110		
	0.74 l ₂₀	1.05 x I10		
	0.81 Iso	1.15 × I10		
	0.84 I100	1.2 × 110		
Rainfall Intensity for Sub-Catchment 1 at 20.3 mins:]	Rainfall Intensity for Sub-	Catchment 2 at
Loto mino.			7.0 mins:	
1, 59.76 mm/hr		1	1	
ls 99.50 mm/hr		1	l ₁ 92.04 mr	
i ₁₀ 113.25 mm/hr		1	ls 155.66 mr	
lao 131.62 mm/hr		1	l ₁₀ 178.34 mr	
l _{so} 156.70 mm/hr		1	l ₂₀ 208.42 mr	
l ₁₀ 176.48 mm/hr		1	l±a 249.62 mr	
NV TOOD IIIDII			1 ₁₆ . 282.30 m/	n/hr
Calculated Discharge				
Q1 0.040 m³/sec			Calculated Discharge	
Q ₅ 0.078 m ³ /sec			Q ₁ 1.058 m ³	
Q ₁₀ 0.094 m ³ /sec			Q ₅ 2.126 m ²	
Q ₂₀ 0.114 m ³ /sec		1	Q ₁₀ 2.564 m ³	
			Q ₂₀ 3.146 m ²	
			Q ₅₀ 4.127 m ⁴	
Q ₁₀₀ 0.175 m ³ /sec		1	Q ₁₀₀ 4.870 m ³	/sec
	Total Comt	pined Discharge		
		m ³ /sec		
		m ³ /sec		
		m ³ /sec		
	Q ₂₀ 3.260	m ³ /sec		

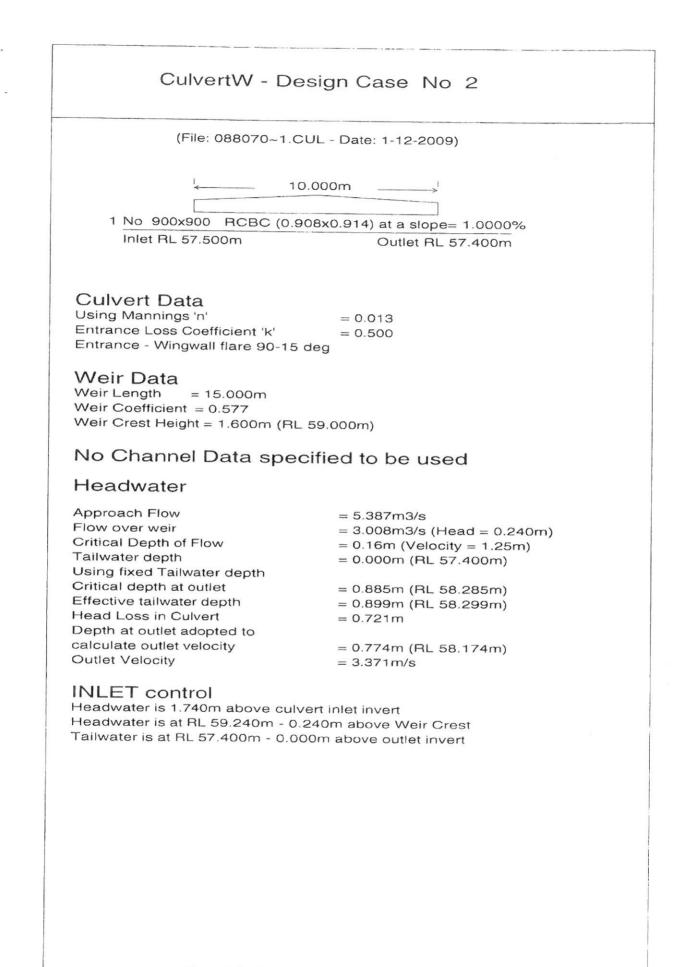

4.276 m³/sec

5.045 m³/sec

Q₅₀ Q₁₀₀

1

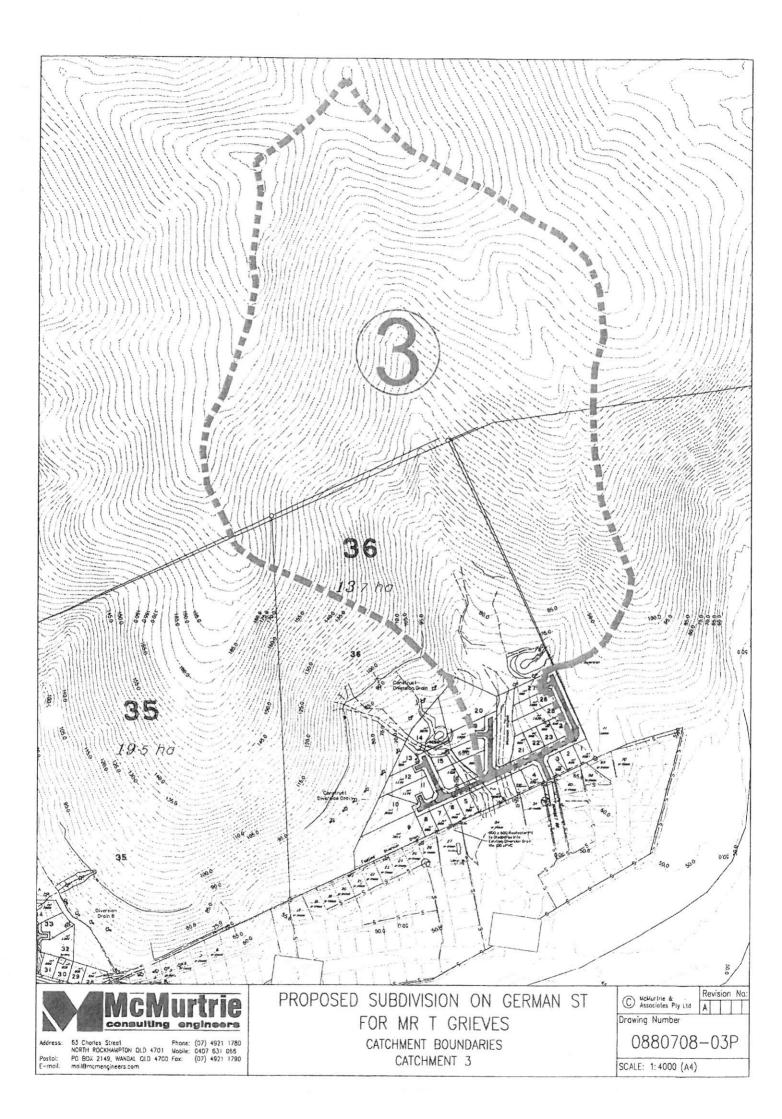

Ph Australia 041-9714208

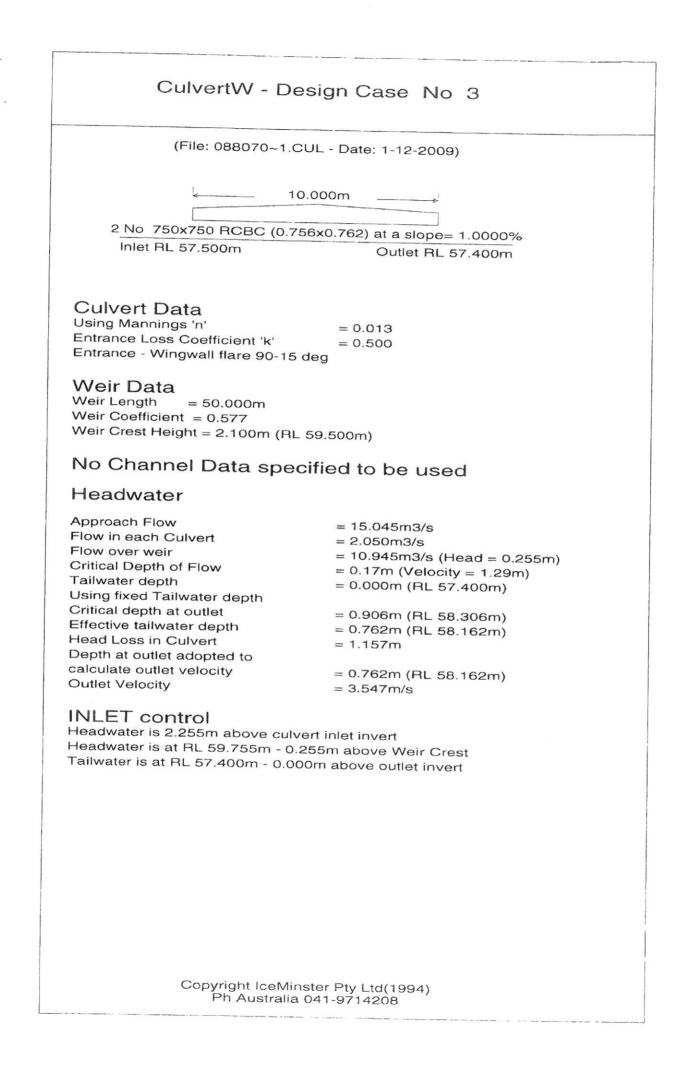

Catchment 2 Major Western RCBC

.....

~

Charle Fr		Flow Theory	
Sheet Flow (Friend's Equation)	t=(107n x L ¹⁻³) / s ¹⁻⁵	Where: L = Length of slope (km	U
,		A = Area (ha) S = Stream Path Slope	(%)
Concentrated Flow	t=58L/(A° 1 x S° 2)	t = time of concentration	
(Bransby-Williams Equation)			
Sub-Catchment 1:		Sub-Catchment 2	o.
		Sub-Calchment 2	2:
Catchment Area 4200 m2	0.4 Ha	Catchment Area	87716 m2 8.8 Ha
Catchment Length 50 m Catchment Grade 30 %		Catchment Length	384 m
n (Hortons Value) 0.1	0.3 m/m	Catchment Grade	30 % 0.3 m/m
Hortons Roughness Coefficient (OUDM Table 4.08	0	n (Hortons Value) Hortons Roughness Coeffic	0.085
	0 013	Concrete and Asphant	0 01 - 0 013
	0 016	Bare Sand	0.01 - 0.016
	- 0 030	Graveled Surface	0.012 - 0.030
	- 0.033	Bare Clay-Loam Soil	0.012 - 0 033
	- 0.130	Sparse Vegiation Shon Grass Paddock	0 059 - 0 130 0.100 - 0 200
	- 0.4B0	Lawns	0.170 - 0.480
F Flow Type		Flow Type	
Sheet Flow O Concent	rated Flow	O Sheet Flow	Concentrated Flow
			Concentrated Fina
Time of Connection			
Time of Concentration t = 20.0 mins		Time of Concentration	mins
t = 0.33 hours			hours
V-last Object (2001-0149/TERNO ()
Veloctiy Check (v=d/t): v = 0.04 m/s	book Suitability	Veloctiy Check (v=d/l):	
v = 0.04 m/s (C sdf;kasg	check Suitability	v = 0.70	m/s Suitable
	Rational Metho	d of Calculation:	[
•	U =	K CIA	4
t		ĸ	1
Ĩ	0.00278	(constant)	1
4		^	4
ł	0.56 1,	0.8 × 1,0	4
	0.67 15	0.95 x I ₁₀	
	0.7 1,0	1 x I ₁₀	
	0.74 I ₂₀	1.05 × 1 ₁₀	
	0.81 lso	1.15 x I ₁₀	
	0.84 l ₁₀₀	1.2 × 1 ₁₀	
Rainfall Intensity for Sub-Catchment 1 at		1	Rainfall Intensity for Sub-Catchment 2 at
20.0 mins:			9.1 mins:
l ₁ 60.27 mm/hr			1 00 50 h-
l ₅ 100.38 mm/hr			l, 83.53 mm/hr L 140.87 mm/hr
l ₁₀ 114.26 mm/hr			ls 140.87 mm/hr lsn 161.23 mm/hr
lgo 132.81 mm/hr			l ₂₀ 188.21 mm/hr
l ₂₀ 158.13 mm/hr			l ₂ 225.19 mm/hr
l ₁₀₃ 178.10 mm/hr			1 ₂ 251.19 mm/nr
			401 204.40 mm/li
Calculated Discharge			Calculated Discharge
Q ₁ 0.039 m ³ /sec			Q ₁ 1.141 m ³ /sec
Q _c 0.078 m ³ /sec			Q ₅ 2.284 m ³ /sec
Q ₁₀ 0.093 m ³ /sec			Q ₁₀ 2.752 m ³ /sec
Q ₂₀ 0.114 m ³ /sec			Q
Q _{to} 0.149 m ³ /sec			O-6 4.420 m³/sec
Q ₁₀₀ 0.175 m ³ /sec			Q ₁₀₀ 5.212 m ³ /sec
	Total Comb	ined Discharge	
	Q ₁ 1.180	m³/sec	
		m ³ /sec	
		m ³ /sec	
	No. of the second se	m ³ /sec	
	03	m ³ /sec	
		m ³ /sec	
	Q ₁₀₀ 5.387	m/sec	
	to my and the second		

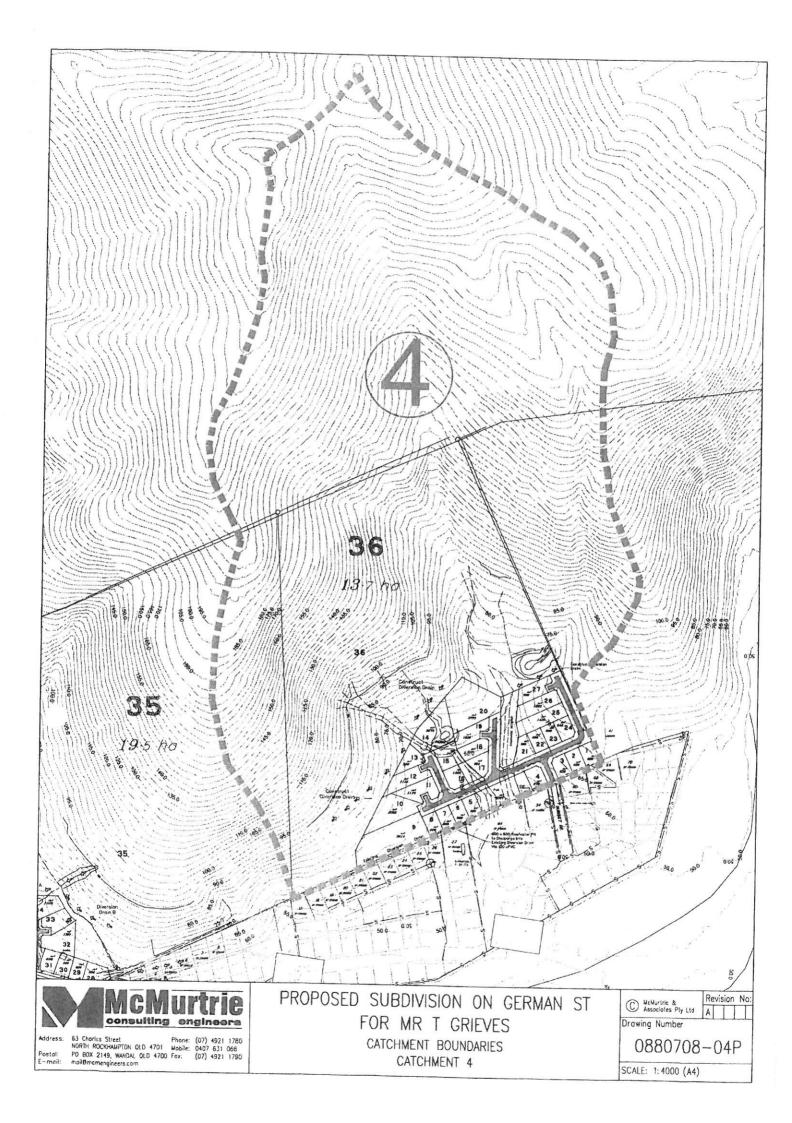




Copyright IceMinster Pty Ltd(1994) Ph Australia 041-9714208

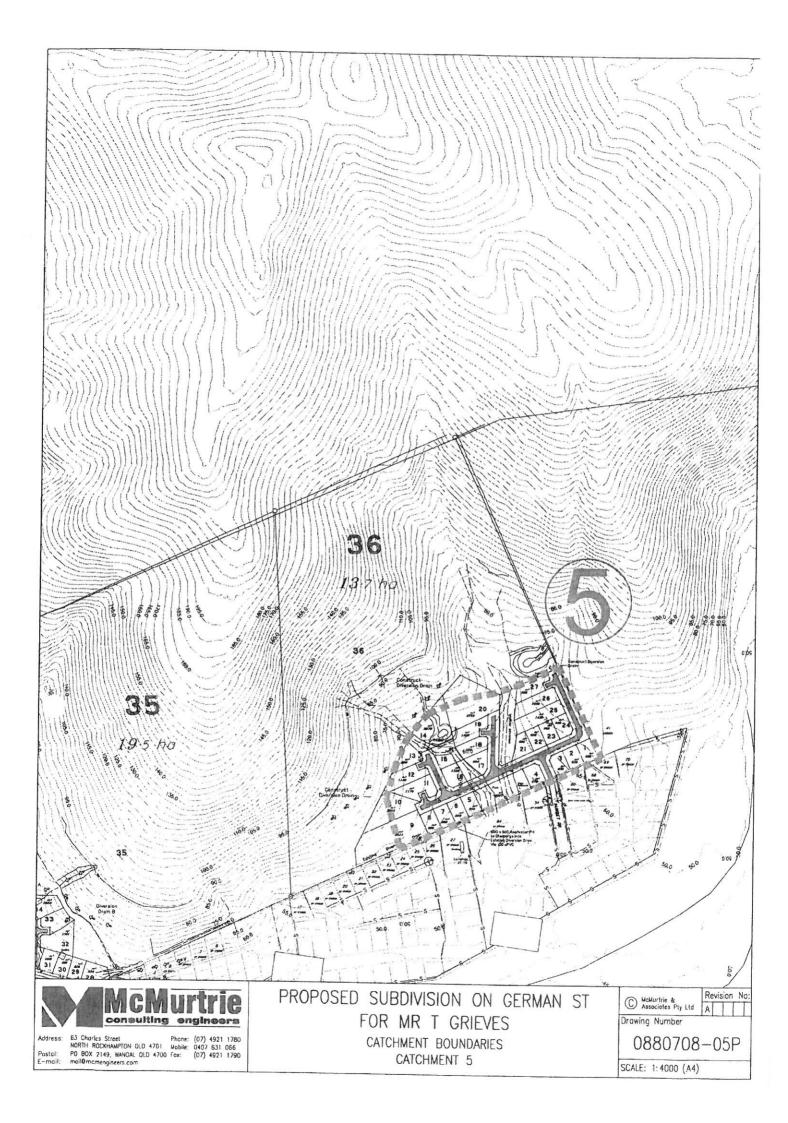
Catchment 3 Major Eastern RCBC

Sheet Flow	Uverland I	Flow Theory	
(Friend's Equation)	t=(107n x L ^{1/3}) / s ^{1/5}	Where: L = Length of slope (kr A = Area (ha)	71)
		S = Stream Path Slope	(<i>P</i> /)
Concentrated Flow (Bransby-Williams Equation)	1=58L/(A ⁰¹ x S ⁰²)	t = time of concentratio	on 9min)
(Cranory Williams Equalion)			
Sub-Catchment 1:		Sub-Catchment	2:
Catchment Area 2344 m2	0.2 Ha	Catchment Area	344588 m2 34.5 Ha
Catchment Length 50 m Catchment Grade 35 %		Catchment Length	916 m
n (Hortons Value) 0.1	0.35 m/m	Catchment Grade	36 % 0.35 m/m
Hortons Roughness Coefficient (OUDM Table 4.06.	4)	n (Hortons Value)	0.085
Concrete and Asphant 0.01	-0.013	Hortons Roughness Coeffi Concrete and Asphant	cient (OUDM Table 4,06.4) 0.01 - 0.013
	- 0.016	Bare Sand	0.01 - 0.013
0.013	2 - 0.030	Gravelled Surface	0.012 - 0.030
and and the proceeding of the second se	3-0130	Bare Clay-Loam Soil	0.012 - 0.033
thert Grass Paddock 0 10	0.0200	Sparse VegRation Short Grass Paddock	0 053 - 0 190
	- 0.480	Lawns	0.100 - 0 200 0.170 - 0.480
Flow Type		F Flow Type	V. // V. V. 40U
Sheet Flow O Concent	rated Flow		<u> </u>
		O Sheet Flow	Concentrated Flow
"Ime of Concentration = 19.4 mins = 0.32 hours /elocity Check (v=d/t): v= v = 0.04 m/s dt;kasg 0	Check Suitability		mins hours m/sSuitable
	Rational Method o	of Calculation:	
1			1
ł	Q = K C		4
1	К		1
	0.00278 (cd	onstant)	
ŀ	C		
	0.56 1	0.8 × I ₁₀	
	0.67 ls	0.95 × 115	
	0.7 l ₁₀	1 x I ₁₀	
	0.74 l ₂₀	1.05 x 110	
	0.81 I _{so}	1.15 × I10	
	0.84 1100	1.2 × 110	
ainfall Intensity for Sub-Catchment 1 at 19.4 mins:			Rainfall Intensity for Sub-Catchment 2 at 18.3 mins:
L 61 10 mm/hr			uma.
l ₁ 61.12 mm/hr l ₅ 101.85 mm/hr			l ₁ 62.68 mm/hr
l ₁₀ 115.95 mm/hr			l _s 104.51 mm/hr
10 113.35 MM/NF			l ₁₀ 119.02 mm/hr
134 79 mm/hr			l ₂₀ 138.40 mni/hr
l ₂₀ 134.79 mm/hr	i i		lss 164.86 mm/hr
l ₅₀ 160.52 mm/hr			
			l _{ina} 185.73 mm/hr
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Ilculated Discharge</i>			
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr I <i>lculated Discharge</i> 0.022 m ¹ /sec			l _{ma} 185.73 mm/hr
Iso 160.52 mm/hr Isco 180.80 mm/hr Noulated Discharge 0.022 m ¹ /sec 0.044 m ¹ /sec			l _{wia} 185.73 mm/hr <u>Calculated Discharge</u> Ω ₁ 3.362 m ⁻¹ /sec Ω ₅ 6.658 m ⁻¹ /sec
Iso 160.52 mm/hr Isto 180.80 mm/hr Alculated Discharge 0.022 m ¹ /sec 0.044 m ² /sec 0.053 m ² /sec			L _{M3} 185.73 mm/hr <i>Calculated Discharge</i> Q ₁ 3.362 m ⁻¹ /sec Q ₅ 6.659 m ⁻¹ /sec Q ₁₀ 7.981 m ³ /sec
lso 160.52 mm/hr lso 180.80 mm/hr <i>lculated Discharge</i> 0.022 m ¹ /sec 0.044 m ² /sec 0.053 m ³ /sec 0.065 m ⁴ /sec			L _{M3} 185.73 mm/hr Calculated Discharge Q ₁ 3.362 m ³ /sec Q ₂ 6.658 m ³ /sec Q ₁₀ 7.981 m ³ /sec Q ₁₀ 9.745 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Ilculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec			Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Ilculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec			L _{M3} 185.73 mm/hr Calculated Discharge Q ₁ 3.362 m ³ /sec Q ₂ 6.658 m ³ /sec Q ₁₀ 7.981 m ³ /sec Q ₁₀ 9.745 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Ilculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec	Total Combine		Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
lso 160.52 mm/hr lso 180.80 mm/hr <i>lculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec	<u>Total Combine</u> Q ₁ 3.385 m ³	d Discharge	Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
lso 160.52 mm/hr lso 180.80 mm/hr <i>lculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec		d Discharge	Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Ilculated Discharge</i> 0.022 m ⁷ /sec 0.044 m ⁷ /sec 0.053 m ⁷ /sec 0.065 m ⁷ /sec 0.084 m ⁴ /sec	Q ₁ 3.385 m ³ / Q ₅ 6.702 m ³ /	ed Discharge /sec /sec	Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Iloulated Discharge</i> 0.022 m ¹ /sec 0.044 m ¹ /sec 0.053 m ¹ /sec 0.065 m ¹ /sec 0.084 m ⁴ /sec	O ₁ 3.385 m ³ O ₅ 6.702 m ³ O ₁₀ 8.034 m ³	ed Discharge //sec /sec /sec	Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec
I ₅₀ 160.52 mm/hr I ₁₀₀ 180.80 mm/hr <i>Iloulated Discharge</i> 0.022 m ¹ /sec 0.044 m ¹ /sec 0.053 m ¹ /sec 0.065 m ¹ /sec 0.084 m ⁴ /sec	Q ₁ 3.385 m ³ / Q ₅ 6.702 m ³ /	ed Discharge Vsec Vsec Jsec Jsec Jsec	Image 185.73 mm/hr Calculated Discharge 1 Q1 3.362 m ³ /sec Q2 6.659 m ³ /sec Q10 7.981 m ³ /sec Qm 9.745 m ³ /sec Qm 12.714 m ³ /sec



Catchment 4 Total Pre Development

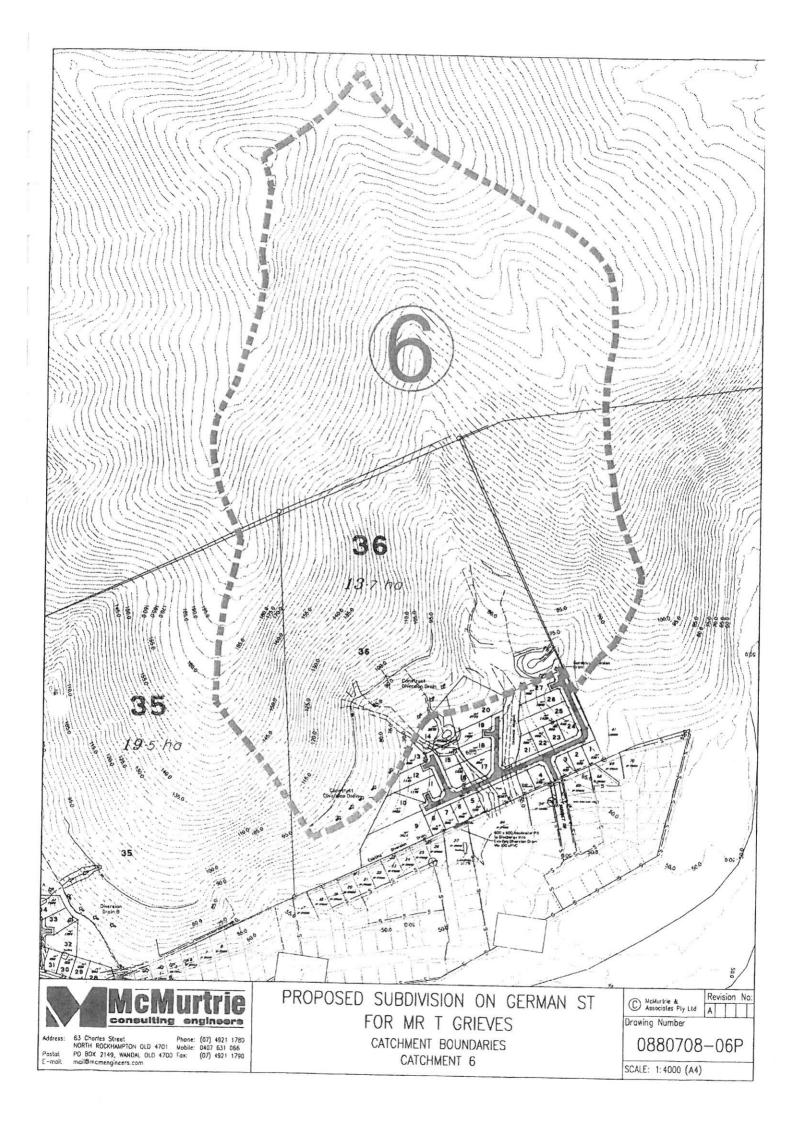
1


Sheet Flow	1-(107p x1 13) 1-15	flow Theory	
(Friend's Equation)	$t=(107n \times L^{13}) / s^{1.5}$	Where: L = Length of slope (kn	n)
		A = Area (ha) S = Stream Path Slope	(°a)
Concentrated Flow (Bransby-Williams Equ	t=58L/(A ^{0 1} x S ^{0 2})	t = time of concentration	
Toransby winants Equ	anony		
Sub-Catchment 1:		Sub-Catchment	2:
Catchment Area 2344	m2 0.2 Ha	Catchment Area	(73337)m2
Catchment Length 50	m	Catchment Length	473237 m2 47.3 Ha 955 m
Catchment Grade 30		Catchment Grade	30 % 0.3 m/m
n (Hortons Value) 0.1		n (Hortons Value)	0.1
Hortons Roughness Coefficient (OUDM		Hortons Roughness Coeffic	cient (OUDM Table 4.06.4)
Concrete and Asphant Bare Sand	0.01 - 0 013	Concrete and Asphant	0 01 - 0 013
Gravelled Surface	D.01 - 0.016 0.012 - 0.030	Bare Sand	0.01 - 0 016
Bare Clay-Loam Soil	0.012 - 0.033	Graveled Surface	0.012 - 0.030
Sparse Vegtation	0.053-0 130	Bare Clay-Loam Soil	0.012 - 0.033
Short Grass Paddock	6 100 - 0 200	Sparse VegRation Shori Grass Paddock	0 052 - 0 130
Lawns	0.170 - 0.480	Lawns	0 100 - 0 200 0.170 - 0 480
- Flow Type		Flow Type	
0	O Concentrated Flow		
		O Sheet Flow	Concentrated Flow
Time of Concentration t = 20.0 mins t = 0.33 hours Velocity Check (v=d'l):			mins hours
v = 0.04 m/s [sdf;kasg	Check Suitability	v = 0.83	m/s Suitable
	Rational Metho	d of Calculation:	[
	0-	K CIA	
	<u></u>	K CIA	
		K	4
		(constant)	
	0.56 1	0.0.21	
		0.8 x I ₁₀	
	0.67 15	0.95 x I10	
	0.7 110	1 × 1,0	
	0.74 20	1.05 × I ₁₀	
	0.81 150	1.15 x I ₁₀	
	0.84 I ₁₀₀	1.2 x l ₁₀	
Bainfall Intensity for Sub-Cate	at 1 at		
Rainfall Intensity for Sub-Catchmer 20.0 mins:	nt 1 at		Rainfall Intensity for Sub-Catchment 2 at 19.1 mins:
20.0 mins:	nt 1 at		19.1 mins:
20.0 mins: 1, 60.27 mm/hr	nt 1 at		19.1 mins: Ir 61.53 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr	nt 1 at		19.1 mins: I1 61.53 mm/hr I ₅ 102.55 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr	nt 1 at		19.1 mins: I1 61.53 mm/hr I ₅ 102.55 mm/hr I ₁₀ 116.76 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr	nt 1 at		19.1 mins: Ir 61.53 mm/hr Is 102.55 mm/hr Im 116.76 mm/hr I ₂₆ 135.74 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr I ₅₀ 158.13 mm/hr	nt 1 at		19.1 mins: 11 61.53 mm/hr 12 102.55 mm/hr 13 116.76 mm/hr 14 135.74 mm/hr 12 161.66 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr	n 1 at		19.1 mins: Ir 61.53 mm/hr Is 102.55 mm/hr Im 116.76 mm/hr I ₂₆ 135.74 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr I ₅₀ 158.13 mm/hr	nt 1 at		19.1 mins: 11 61.53 mm/hr 12 102.55 mm/hr 13 116.76 mm/hr 14 135.74 mm/hr 12 161.66 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr I ₅₀ 158.13 mm/hr I ₁₀₂ 178.10 mm/hr	nt 1 at		19.1 mins: In 61.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr Iso 135.74 mm/hr Iso 135.74 mm/hr Iso 182.10 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₈₀ 132.81 mm/hr I ₈₀ 158.13 mm/hr I ₁₀₀ 178.10 mm/hr I ₁₀₀ 2000 2 m ² /sec	n 1 at		19.1 mins: Ir 61.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Iv 135.74 mm/hr Iv 161.66 mm/hr Ivo 182.10 mm/hr Ivo 182.10 mm/hr
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₁₀ 132.81 mm/hr I ₂₀ 132.81 mm/hr I ₁₀ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 778.10 mm/hr Calculated Discharge 0.022 m ² /sec O ₅ 0.043 m ² /sec	n 1 at	ſ	19.1 mins: I1 61.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr Is 135.74 mm/hr Is 151.66 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Calculated Discharge 0 Q1 4.533 m ¹ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₁₀ 114.26 mm/hr I ₂₀ 132.81 mm/hr I ₂₀ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 0.022 m ² /sec D ₁ 0.022 m ³ /sec D ₁₀ 0.052 m ³ /sec	n 1 at		19.1 mins: Ir 61.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr Ip 135.74 mm/hr Is 151.66 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Isco 182.10 mm/hr Calculated Discharge 0, 4.533 m ² /sec Qs 8.972 m ² /sec
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₆ 114.26 mm/hr I ₈₀ 132.81 mm/hr I ₈₀ 158.13 mm/hr I ₈₀ 158.13 mm/hr I ₈₀ 178.10 mm/hr Calculated Discharge D ₁ 0.022 m ² /sec D ₁₀ 0.052 m ² /sec D ₁₀ 0.064 m ² /sec	n 1 at		19.1 mins: I1 61.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 135.74 mm/hr Is 131.66 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 8.372 m ³ /sec Qs 8.372 m ³ /sec Qs0 10.753 m ³ /sec
I1 60.27 mm/hr Is 100.38 mm/hr Io 114.26 mm/hr Io 132.81 mm/hr Iso 158.13 mm/hr Iso 158.13 mm/hr Iso 158.13 mm/hr Iso 178.10 mm/hr Calculated Discharge 0.022 m²/sec 03 0.043 m²/sec 1so 0.052 m²/sec	n 1 at		19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Iv 135.74 mm/hr Iv 151.66 mm/hr Iv 151.66 mm/hr Ivo 182.10 mm/hr Calculated Discharge 04.533 m ² /sec Qa 8.972 m ³ /sec Qa0 10.753 m ² /sec Qa0 13.126 m ³ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	n 1 at		19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	n 1 at		19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Iv 135.74 mm/hr Iv 151.66 mm/hr Iv 151.66 mm/hr Ivo 182.10 mm/hr Calculated Discharge 04.533 m ² /sec Qa 8.972 m ³ /sec Qa0 10.753 m ² /sec Qa0 13.126 m ³ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec			19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₅ 100.38 mm/hr I ₆ 114.26 mm/hr I ₆ 114.26 mm/hr I ₆ 132.81 mm/hr I ₆ 158.13 mm/hr I ₆₀ 158.13 mm/hr I ₁₀₀ 178.10 mm/hr Calculated Discharge 0, 0.022 m ³ /sec O ₁₀ 0.052 m ³ /sec O ₁₀ 0.052 m ³ /sec O ₂₀ 0.064 m ³ /sec O ₂₀ 0.063 m ³ /sec	<u>Total Comb</u> Q ₁ 4.555	ined Discharge	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I1 60.27 mm/hr I2 100.38 mm/hr I2 114.26 mm/hr I20 132.81 mm/hr I20 158.13 mm/hr I20 158.13 mm/hr I20 158.13 mm/hr I20 158.10 mm/hr I20 0.022 m ³ /sec I20 0.064 m ³ /sec I20 0.064 m ³ /sec I20 0.063 m ³ /sec	<u>Total Comb</u> Q ₁ 4.555	ined Discharge	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	<u>Total Comb</u> Q ₁ 4.555 Q ₅ 9.015	ined Discharge m ³ /sec m ³ /sec	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 16.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.72 m/sec Qs 10.753 m/sec Qs0 13.126 m/sec Qs0 17.121 m*/sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	Total Comb Q1 4.555 Q5 9.015 Q10 10.805	ined Discharge m ³ /sec m ³ /sec m ³ /sec	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	Total Comb. Q1 4.555 Q5 9.015 Q10 10.805 Q20 13.190	ined Discharge m ³ /sec m ³ /sec m ³ /sec m ³ /sec	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec
20.0 mins: I ₁ 60.27 mm/hr I ₂ 100.38 mm/hr I ₂ 114.26 mm/hr I ₂ 114.26 mm/hr I ₂ 132.81 mm/hr I ₂ 132.81 mm/hr I ₂ 158.13 mm/hr I ₁₀ 178.10 mm/hr I ₁₀ 178.10 mm/hr Calculated Discharge 0 0 0.022 m ³ /sec I ₁₀ 0.054 m ³ /sec I ₂₀ 0.064 m ³ /sec I ₂₀ 0.064 m ³ /sec	Total Comb Q1 4.555 Q5 9.015 Q10 10.805	ined Discharge m ³ /sec m ³ /sec m ³ /sec m ³ /sec m ³ /sec m ³ /sec	19.1 mins: Ir 51.53 mm/hr Is 102.55 mm/hr In 116.76 mm/hr In 116.76 mm/hr Ig 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 135.74 mm/hr Is 161.66 mm/hr Is 182.10 mm/hr Is 182.10 mm/hr Is 13.52 m ⁷ /sec Qs 13.126 m ⁷ /sec Qso 13.126 m ⁷ /sec Qso 17.121 m ⁴ /sec

Travel time (t) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Catchment 5 Post Development Lots Only

Overla	and Flow Theory
Sheet Flow t=(107n x L ^{1/3}) / s ^{1/5}	Where: L = Length of slope (km)
(Friend's Equation)	A = Area (ha)
Concentrated Flow t=58L/(A ⁰¹ x S ^{0 P})	S = Stream Path Slope (%)
(Bransby-Williams Equation)	t = time of concentration 9min)
Sub-Catchment 1:	Sub-Catchment 2:
Catchment Area 39932 m2 4.0 Ha	Catchment Area 0 m2 0.0 Ha
Catchment Length 150 m	Catchment Area 0 m2 0.0 Ha Catchment Length 0.1 m
Catchment Grade 10% 0.1 m/m	Catchment Grade 0.1 °, 0.001 m/m
n (Hortons Value) 0.069	n (Hortons Value) 1
Hortons Roughness Coefficient (QUDM Table 4.06.4) Concrete and Asphant 0.01 - 0.013	Hortons Roughness Coefficient (OUDM Table 4.06.4)
Concrete and Asphant 0.01 - 0.013 Bare Send 0.01 - 0.016	Concrete and Asphant 0.01 - 0.013
Gravelled Surface 0.012 - 0.030	Bare Sand 0 01 - 0.016 Gravelled Surface 0.012 - 0 030
Bare Clay-Loam Soll 0.012 - 0.033	Gravelled Surface 0.012 - 0 030 Bare Clay-Loam Soli 0.012 - 0 033
Sparse Vegitation 0.053 - 0.130	Sparse Vegitation 0 053 - 0.130
Short Grass Paddock 0.100 - 0.200	Short Grass Paddock 0.100 - 0.200
Lawns 0 170 - 0.480	Lawns 0.170 - 0.480
Flow Type	Flow Type
O Sheet Flow Concentrated Flow	Sheet Flow O Concentrated Flow
<i>Time of Concentration</i> t = 4.8 mins t = 0.08 hours	Time of Concentration t = 78.7 mins t = 1.31 hours
Veloctiy Check (v=d/t):	Velocity Check (v=d/l):
v = 0.52 m/s Check Suitability	v = 0.00 m/s Check Suitability
sdf;kasg	Course another registramentation on a manuscream sum manuscream all
Rational M	lethod of Calculation:
	Q = K CIA
	<u>q-non</u>
	ĸ
0.0	0278 (constant)
	c
0.56 1	0.8 × I ₁₀
0.67 %	0.95 × 110
0.7 10	
0.74 120	1 x I ₁₀
0.81 159	$1.05 \times 1_{10}$ $1.15 \times 1_{10}$
0.84 1	1.2 × I ₁₀
Rainfall Intensity for Sub-Catchment 1 at	
4.8 mins:	Rainfall Intensity for Sub-Catchment 2 at 78.7 mins:
106.00 mm/br	
l ₁ 106.00 mm/hr	l ₁ 28.60 mm/hr
ls 178.95 mm/hr	l₅ 47.47 mm/hr
l ₁₀ 204.70 mm/hr	lsn 53.95 mm/hr
239.10 mm/hr	l ₁₃ 62.64 mm/hr
l _{so} 286.09 mm/hr	ls. 74.48 mm/hr
l ₁₀₀ 323.40 mm/hr	l _{iro} , 83.81 mm/hr
Calculated Discharge	
Calculated Discharge Q, 0.659 m ³ /sec	Calculated Discharge
Q ₅ 1.321 m ³ /sec	
Q ₁₀ 1.591 m ³ /sec	Q0.000 m ³ /sec
Q ₂₀ 1.951 m ³ /sec	Q ₁₀ 0.000 m ³ /sec Q ₁₀ 0.000 m ³ /sec
Q ₅₀ 2.557 m ³ /sec	
Q ₁₀₀ 3.016 m ³ /sec	
	Q ₁₀₀ 0.000 m ³ /sec
Total Co	ombined Discharge
Q, 0.6	659 m ³ /sec
20041 1.000	321 m ³ /sec
	591 m ³ /sec
	951 m ³ /sec
	557 m ³ /sec
Q ₁₀₀ 3.0	016 m ³ /sec


Catchment 6 Remaining Undeveloped

-

.

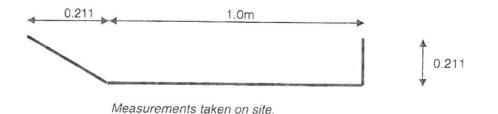
Sheet Flow l=(107n x 1 ^{1/3}) / s ^{1/5}	M Flow Theory Where: L = Length of slope (km)
(Friend's Equation)	A = Area (ha)
•	S = Stream Path Slope (%)
Concentrated Flow I=58U(A ⁰¹ x S ⁰²) (Bransby Williams Equation)	t = time of concentration 9min)
Sub-Catchment 1:	Sub-Catchment 2:
atchment Area 2344 m2 0.2 Ha	Catchment Area 427234 m2 42.7 Ha
atabases O	Catchment Length 850 m
(Hortons Value) 0.1	Catchment Grade 30 % 0.3 m/m
ortons Roughness Coefficient (QUDM Table 4.06.4)	n (Hortons Value) 0.1
oncrete and Asphant 0.01 - 0.013	Hortona Roughness Coefficient (QUDM Table 4.06.4) Concrete and Asphant 0.01 - 0.013
are Sand 0.01 - 0.016	
ravelled Surface 0.012 - 0.030	Sare Sand 0 01 - 0 016 Graveled Surface 0 012 - 0.030
are Clay-Loam Soli 0.012 - 0.033 bates Vegitetion 0.055 - 0.130	Bare Clay-Loam Sol 0.012 - 0.033
Nort Guiss Pardock 0 100 0.200	Spanac VegRation 0 053 0.130
Whs 0.170 - 0.480	Short Grass Paddock 6 100 - 0 200
Flow Type	Lawns 0 170 - 0 480
A +	Flow Type
Sheet How O Concentrated Flow	O Sheet Flow Concentrated Flow
ime of Concentration	Time of Concentration
= 20.0 mins = 0.33 hours	t = 17.2 mins
	t = 0.29 hours
eloctiy Check (v=d/t):	Veloctiy Check (v=dn):
v = 0.04 m/s Check Suitability	v = 0.83 m/s Suitable
f;kasg	
Rational Metho	od of Calculation:
	K CIA
	К
0.00276	8 (constant)
	c
0.56 /1	0.8 x I ₁₀
0.67 /s	$0.95 \times 1_{10}$
0.7 110	1 x ₁₀
0.74 1.0	1.05 x i ₁₀
0.81 150	1.15 x I ₁₀
0.84 /150	$1.13 \times 1_{10}$ $1.2 \times 1_{10}$
infall Intensity for Sub-Catchment 1 at	
20.0 mins:	Rainfall Intensity for Sub-Catchment 2 at 17.2 mins;
l ₁ 60.27 mm/hr	
	l ₁ 64.52 mm/hr
	I. 107.70 mm/hr
	l ₁₀ 122.70 mm/hr
leo 132.81 mm/hr	1 _ 142.72 mm/hr
lso 158.13 mm/hr	l ₁₂ 170.07 mm/hr
100 178.10 mm/hr	I ₁₀₀ 191.65 mm/hr
culated Discharge	Calculated Discharge
0.022 m ³ /sec	Q, 4.292 m ⁴ /sec
0.043 m ³ /sec	Q ₅ 8.506 m ⁴ /sec
0.052 m ³ /sec 0.064 m ³ /sec	Q ₁₀ 10.201 m ³ /sec
	Q ₂₀ 12.459 m ³ /sec
0.083 m ⁴ /sec	Q ₅₀ 16.261 m ² /sec
0.097 m ³ /sec	Q ₁₀₀ 19.120 m ³ /sec
Total Combi	ined Discharge
	m³/sec
	3
Q ₁ 4.314 Q ₅ 8.550	m ³ /sec
Q ₅ 8.550	
Q ₅ 8.550 Q ₁₀ 10.253	m³/sec
$\begin{array}{ccc} Q_{5} & 8.550 \\ \hline Q_{10} & 10.253 \\ \hline Q_{20} & 12.523 \end{array}$	m³/sec
Q ₅ 8.550 Q ₁₀ 10.253	m ³ /sec m ³ /sec

Travel time (I) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Catchment 6a: Mannings Calculations

Existing Concrete Open Channel

Proposed Residential Subdivision on German Street


5%

A WP R	0.2356 1.52 0.155	
s	0.05	

$V = 1/n \ge R^{2/3} \ge S^{1/2}$

n 1/n	0.012 (Manngings: Concr 83.333	rete - Finished)
R ^{2/3} S ^{1/2}	0.289 0.223607	
v	5.377 m/sec	
Q=VA		
Q	1.267 m ³ /sec	

Image 1: Existing Concrete Open Channel

Catchment 6a Total Contributing to Open Channel

.

Travel time (t) for overland flow is calculated using either the Friend or Bransby Method (QUDM). Click method required below:

Sheet Flow	Overland Flo	e: L = Length of slope (km)	
(Friend's Equation)	the field the fi	A = Area (ha)	
C		S = Stream Path Slope (%)	
Concentrated Flow (Bransby-Williams Equation)	t=58L/(A ⁰¹ x S ⁰²)	I = time of concentration 9min)	
Sub-Catchment 1:		Sub-Catchment 2:	
Catchment Area 594 m2	0.1 Ha		
Catchment Length 50 m	0.1 114		750 m2 1.9 Ha
Catchment Grade 27 %	0.27 m/m	Catchment Length Catchment Grade	248 m
n (Hortons Value) 0.1			27 % 0.27 m/m
Hortons Roughness Coefficient (OUDM Table 4.0) Concrete and Asphant 0.0	5.4)	Hortons Roughness Coefficient (QUD	0.1
	1 - 0 013	Concrete and Asphant	0 01 - C 013
0.0	0.016	Bare Sand	0 01 - 0 015
0.01	2 - 0 030	Graveled Surface	0.012 - 0.030
A CONTRACT BOOK STREAM IN CONTRACT OF STREAM	53 - 0.130	Bare Clay-Loam Soil	0.012 - 0.033
	00-0.200	Sparse Vegitalion	0 052 - 0 130
	0 - 0.480	Short Grass Paddock	6 100 - 0 200
Flow Type		Lawns	0.170 - 0.480
		Flow Type	
Concer	ntrated Flow	O Sheet Flow	Concentrated Flow
Time of Concentration	1	Time of Concentration	
= 20.4 mins = 0.34 hours	1	l = 7.0 mins	
= 0.34 hours		1 = 0.12 hours	
/eloctiy Check (v=d/l):			
	Check Suitability	Veloctiy Check (v=d/t):	
df;kasg		v = 0.59 m/s	Check Suitability
	Detirector		
	Rational Method of Calc	ulation:	
	Q = K CIA		
	К		
	0.00278 (constai	atl	
	CONSIGNATION (CONSIGN	11)	
	C		
	0.56 1, 0.	8 x I ₁₀	
	0.67 l ₅ 0.9	5 x I10	
		1 x I10	
		5 x l ₁₀	
		5 x 1	
	0.81 I ₅₀ 1.1	5 x i ₁₀ 2 x i ₁₀	
ainfall Intensity for Sub-Catchment 1 at	0.81 I ₅₀ 1.1	2 x l ₁₀	
ainfall Intensity for Sub-Catchment 1 at 20.4 mins:	0.81 I ₅₀ 1.1	2 x l ₁₀ Rainfall Ir	niensily for Sub-Catchment 2 al
20.4 mins:	0.81 I ₅₀ 1.1	2 x l ₁₀ Rainfall Ir	itensity for Sub-Catchment 2 at 0 mins;
20.4 mins: I ₁ 59.69 mm/hr	0.81 I ₅₀ 1.1	2 x l ₁₀ Rainfall Ir	Itensity for Sub-Catchment 2 at 0 mins: 92.08 mm/hr
20.4 mins: I ₁ 59.69 mm/hr I ₆ 99.39 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7. I ₁	0 mins: 92.08 mm/hr
20.4 mins: I ₁ 59.69 mm/hr I ₅ 99.39 mm/hr I ₁₀ 113.12 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7. I ₁ I ₅	0 mins: 92.08 mm/hr 155.74 mm/hr
20.4 mins: I ₁ 59.69 mm/hr I ₆ 99.39 mm/hr I ₁₀ 113.12 mm/hr I ₂₀ 131.47 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Reinfall Ir 7. Is Is	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr
20.4 mins: 1, 59.69 mm/hr 1, 99.39 mm/hr 1, 113.12 mm/hr 1, 131.47 mm/hr 1, 156.52 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Reinfall Ir 7, Is Is In Is	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr
20.4 mins: I ₁ 59.69 mm/hr I ₆ 99.39 mm/hr I ₁₀ 113.12 mm/hr I ₂₀ 131.47 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7. Is Is In Is In Is	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr
20.4 mins: 1, 59.69 mm/hr 1 ₆ 99.39 mm/hr 1 ₁₀ 113.12 mm/hr 1 ₅₀ 131.47 mm/hr 1 ₅₀ 156.52 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Reinfall Ir 7, Is Is In Is	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr
20.4 mins: 1, 59.69 mm/hr 1 ₆ 99.39 mm/hr 1 ₁₀ 113.12 mm/hr 1 ₂₀ 131.47 mm/hr 1 ₅₀ 156.52 mm/hr 1 ₆₀ 176.27 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7. Is Jm Is Jm Is Jm Is Jm Is Jm	9 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr
20.4 mins: 1, 59.69 mm/hr 1 ₆ 99.39 mm/hr 1 ₁₀ 113.12 mm/hr 1 ₂₀ 131.47 mm/hr 1 ₅₀ 156.52 mm/hr 1 ₄₀₀ 176.27 mm/hr 1 ₄₀₀ 0.006 m ³ /sec	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7, Is Is In Is Is In Is Is In Is Calculates	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr
20.4 mins: 1, 59.69 mm/hr 1s 99.39 mm/hr 1so 113.12 mm/hr 1so 131.47 mm/hr 1so 156.52 mm/hr 1so 176.27 mm/hr	0.81 I ₅₀ 1.1	2 x I ₁₀ Reinfall Ir 7, Is Is Is Is Is Is Is Is Is Is Is Is Calculated Q1	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr 1 <u>Discharge</u> 0.269 m ³ /sec
20.4 mins: 1, 59.69 mm/hr 1 ₆ 99.39 mm/hr 1 ₁₀ 113.12 mm/hr 1 ₂₀ 131.47 mm/hr 1 ₅₀ 156.52 mm/hr 1 ₆₀ 176.27 mm/hr 1 ₆₀ 0.006 m ³ /sec 0.011 m ³ /sec	0.81 I ₅₀ 1.1	2 x 1 ₁₀ Rainfall Ir 7. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr <i>d Discharge</i> 0.269 m ³ /sec 0.540 m ³ /sec
20.4 mins: 1, 59.69 mm/hr 1 ₆ 99.39 mm/hr 1 ₁₀ 113.12 mm/hr 1 ₂₀ 131.47 mm/hr 1 ₅₀ 156.52 mm/hr 1 ₁₀₀ 176.27 mm/hr <i>Iculated Discharge</i> 0.006 m ⁹ /sec 0.011 m ⁹ /sec	0.81 I ₅₀ 1.1	2 x I ₁₀ Paintall Ir 7. Is In. I.u Irs I.co Calculated Q ₁ Q ₅ Q ₁₀	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr 9 <i>Discharge</i> 0.269 m ⁷ /sec 0.540 m ⁷ /sec 0.651 m ³ /sec
20.4 mins: 1, 59.69 mm/hr 1s 99.39 mm/hr 1so 113.12 mm/hr 1so 131.47 mm/hr 1so 156.52 mm/hr 1so 176.27 mm/hr <i>Iculated Discharge</i> 0.006 m ⁷ /sec 0.011 m ³ /sec 0.016 m ⁷ /sec	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7, Is In Is In Is In Is In Is In Calculated Q ₁ Q ₂ Q ₂₀	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr <i>d Discharge</i> 0.269 m ³ /sec 0.540 m ³ /sec
20.4 mins: 1, 59.69 mm/hr 1s 99.39 mm/hr 1so 113.12 mm/hr 1so 131.47 mm/hr 1so 156.52 mm/hr 1so 176.27 mm/hr 1so 0.06 m ⁷ /sec 0.011 m ³ /sec 0.016 m ⁷ /sec 0.016 m ⁷ /sec	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall II Is In I, Is In I, Is In I, Is In I, Is In I, Is In I, Is In I, Is In I, Is In Is Is In Is In Is Is In Is Is Is Is Is Is Is Is Is Is	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr 9 <i>Discharge</i> 0.269 m ⁷ /sec 0.540 m ⁷ /sec 0.759 m ⁷ /sec 1.048 m ⁹ /sec
20.4 mins: 1, 59.69 mm/hr 1s 99.39 mm/hr 1so 113.12 mm/hr 1so 156.52 mm/hr 1so 176.27 mm/hr 1so 0.006 m ⁷ /sec 0.011 m ⁹ /sec 0.016 m ⁹ /sec 0.021 m ⁴ /sec	0.81 I ₅₀ 1.1	2 x I ₁₀ Rainfall Ir 7, Is In Is In Is In Is In Is In Calculated Q ₁ Q ₂ Q ₂₀	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr 282.45 mm/hr <i>d Discharge</i> 0.269 m [*] /sec 0.540 m [*] /sec 0.799 m [*] /sec
20.4 mins: 1, 59.69 mm/hr 1s 99.39 mm/hr 1so 113.12 mm/hr 1so 156.52 mm/hr 1so 176.27 mm/hr 1so 0.006 m ³ /sec 0.011 m ³ /sec 0.016 m ³ /sec 0.016 m ³ /sec	0.81 I ₅₀ 1.1	2 x 1 ₁₀ Reinfall Ir 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0 mins: 92.08 mm/hr 155.74 mm/hr 178.43 mm/hr 208.52 mm/hr 249.75 mm/hr 282.45 mm/hr 9 <i>Discharge</i> 0.269 m ⁷ /sec 0.540 m ⁷ /sec 0.759 m ⁷ /sec 1.048 m ⁹ /sec

0.664 m³/sec

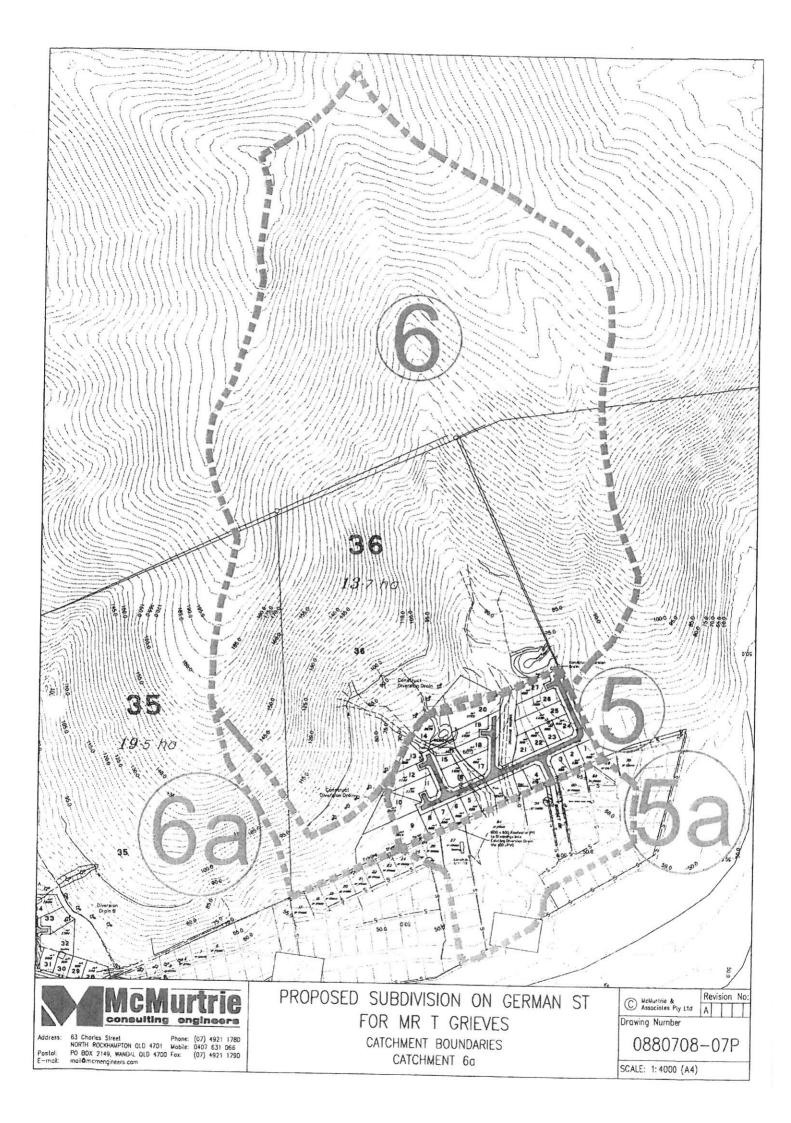
0.815 m³/sec

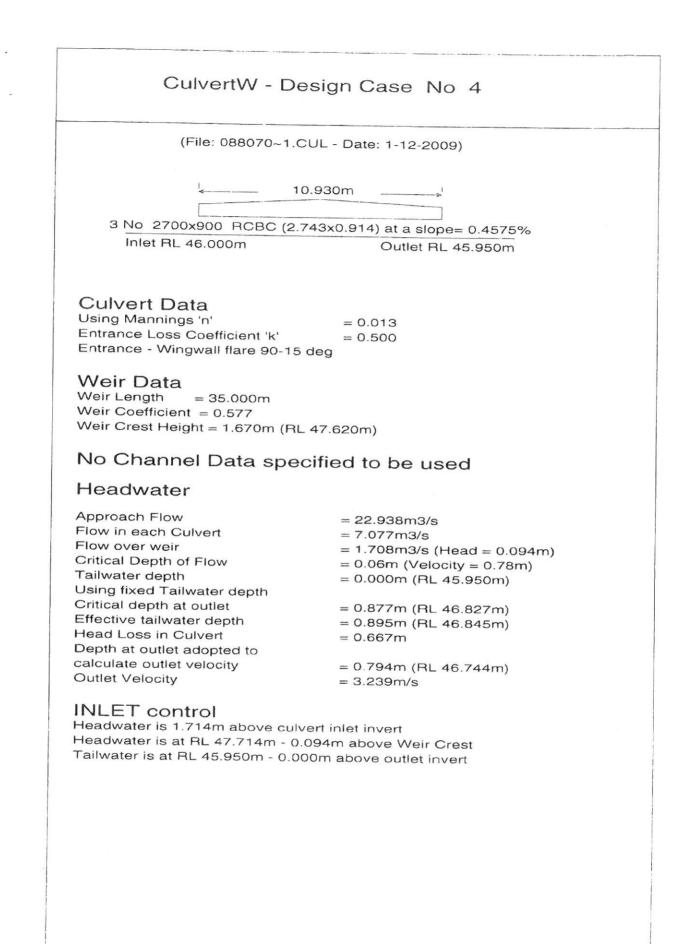
1.069 m³/sec

1.261 m³/sec

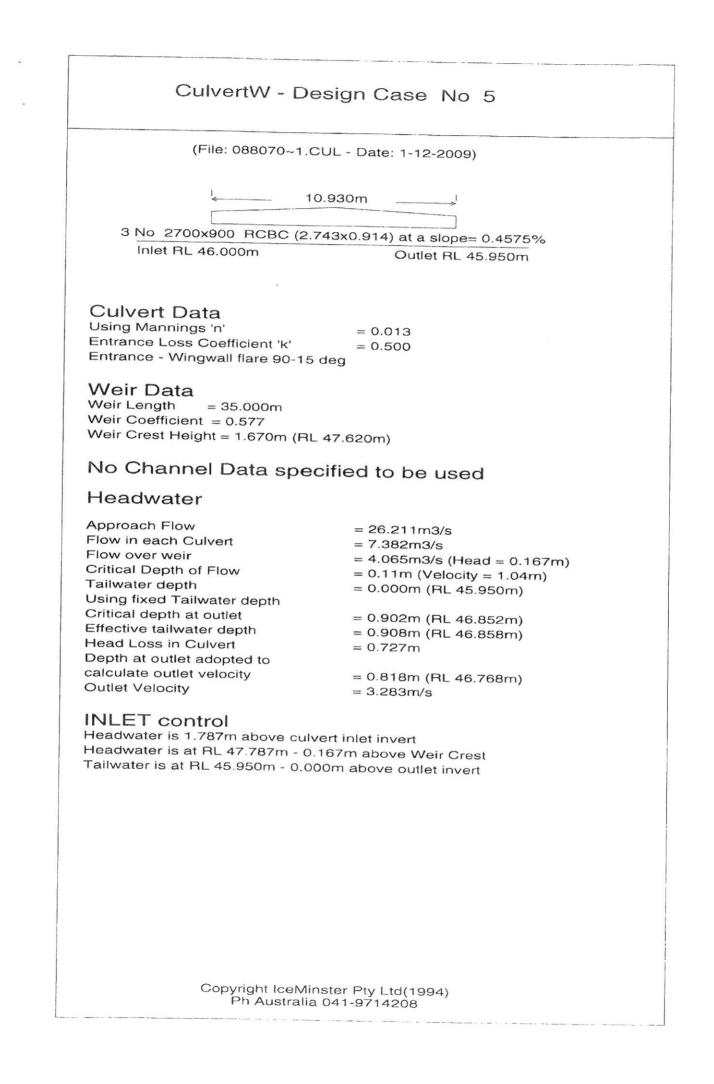
Q₁₀

Q₂₀ Q₅₀


Q₁₀₀


Catchment 5a Total Contributing to Open Channel

Overland Flow Theory Sheet Flow t=(107n x L13)/s15 L = Length of slope (km) Where: (Friend's Equation) A = Area (ha) S = Stream Path Slope (%) Concentrated Flow t=58L/(A" ' x S") t = time of concentration 9min) (Bransby-Williams Equation) Sub-Catchment 1: Sub-Catchment 2: Catchment Area Catchment Area Catchment Length 4.3 Ha 43213 0.0 Ha Catchment Length Catchment Grade 250 10 m % 0.1 m/m Catchment Grade 0.01 m/m n (Hortons Value) 0.069 n (Hortons Value) Hortons Roughness C Concrete and Asphant 4.06.4) 0.01 - 0.013 0.01 - 0.013 0.01 - 0.015 Hortons Roughness Coel Concrete and Asphan Bare Sand 0.01 - 0.016 are Sand Gravelled Surface Bate Clay-Loam Soil 0.012 - 0 030 Graveled Surface 0 012 - 0 030 0 012 - 0.033 Bare Clay-Loam Sol Sparse Vegitation 0.012 - 0.033 Sparse Vegenion Short Grass Paddock 0.053 - 0 130 0.100 - 0 200 0 053 - 0 130 Short Grass Paddock 0 100 - 0 200 Lawns 0.170 - 0.480 Lawns 0.170 - 0.480 Flow Type -Flow Type -O Sheet Flow Concentrated Flow O Sheet Flow Concentrated Flow Time of Concentration t = 7.9 mins Time of Concentration t = t = t = t = 0.2 mins 0.13 hours 0.00 hours Veloctiy Check (v=d/t): Velocity Check (v=d/l): v = 0.09 m/s V = 0.53 m/s Check Suitability Check Suitability sdf;kasg Rational Method of Calculation. Q = K CIA 0.00278 (constant) 0.56 l 0.8 × I10 0.67 ls 0.95 × I10 0.7 l10 1 x I10 0.74 l20 1.05 x l10 0.81 10 1.15 x I10 0.84 1,00 1.2 × Im Rainfall Intensily for Sub-Catchment 1 at Rainfall Intensity for Sub-Catchment 2 at 0.2 mins: 7.9 mins ١, 87.98 mm/hr 14505.67 mm/hr ١, 148.65 mm/hr ŀ. 1431.51 mm/hr 15 I10 170.24 mm/hr 1,1 376.03 mm/hr 198.87 mm/hr 120 1,0 154.03 mm/hr 238.10 mm/hr 100 1:3 55 31 mm/br 1,00 269.18 mm/hr 27.59 mm.hr line Calculated Discharge Calculated Discharge 1.188 m⁴/sec a, 0.000 m³/sec 0, Q₁₀ Q₂₀ 1.432 m³/sec Q10 Q20 0.000 m³/sec 1.756 m³/sec 0.000 m /sec 2.303 m³/sec 00 Q50 0.000 m'/sec 2.716 m³/sec Q100 Q100 0.000 m³/sec Total Combined Discharge Q1 0.592 m³/sec 1.188 m³/sec Qs 1.432 m³/sec Q₁₀ Q20 1.756 m³/sec Q50 2.303 m³/sec


2.716 m³/sec

Q100

Copyright IceMinster Pty Ltd(1994) Ph Australia 041-9714208

.

.

Attachment

.

.

С

.

Existing Open Channel Drainage Reserve Chainage 30 Lot 84 SP179522

Naturelands Estate

A WP R	7.656 24.58 0.311		Depth of Flow:	371 mm
S	0.05	5%		

$V = 1/n \times R^{2/3} \times S^{1/2}$

Q

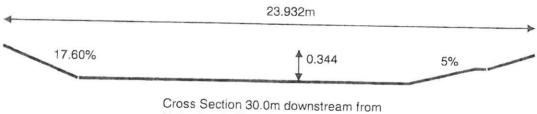
1

n 1/n	0.03 33.333	(Manngings: Grass Channel)
R ^{2/3} S ^{1/2}	0.459 0.223607	
v	3.425 m	n/sec
Q=VA		

26.221 m³/sec

24.531m 17.60% Cross Section 30.0m downstream from Naturelands Estate's point of discharge

Existing Open Channel Drainage Reserve Chainage 30 Lot 84 SP179522


Naturelands Estate

A WP R	7.002 23.978 0.292		Depth of Flow:	344 mm
S	0.05	5%		

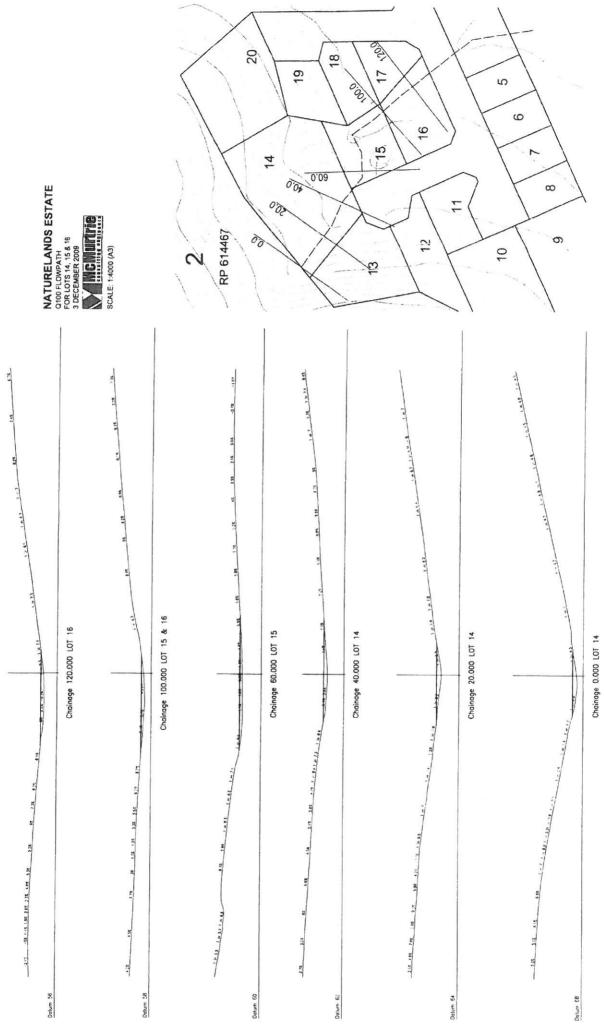
$V = 1/n \ge R^{2/3} \ge S^{1/2}$

n	0.03 (Manngings: Grass Channel)
1/n	33.333
R ^{2/3}	0.440
S ^{1/2}	0.223607
v	3.281 m/sec
Q=VA	

Q 22.972 m³/sec

Naturelands Estate's point of discharge

.


.

,

Attachment

D

Open Channel Q100 Calculations Chainage 0 - LOT 14 For Lots 14, 15 & 16

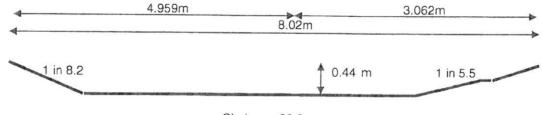
A WP R	1.725 6.605 0.261		Depth of Flow:	390 mm
S	0.05	5%		
V = 1/	n x R ^{2/3} x	S ^{1/2}		
n 1/n	0.03 (33.333	Manngings:	Grass Channel)	
R ^{2/3} S ^{1/2}	0.409 0.223607			
v	3.045 m/s	sec		
Q=VA				
Q	5.3 m ³ /	sec	5.387	
<u>الم</u>		3.976m	6.537m	2.560m

1 in 6.9 0.39 m 1 in 6.3

Chainage 0.0

Open Channel Q100 Calculations Chainage 20 - LOT 14 For Lots 14, 15 & 16

A WP R	1.889 8.08 0.234		Depth of Flow:	440 mm
S	0.05	5%		


$V = 1/n \ge R^{2/3} \ge S^{1/2}$

n 1/n	0.03 33.333	(Manngings: Grass Channel)
R ^{2/3} S ^{1/2}	0.380 0.223607	
v	2.829 m	n/sec

Q=VA

Q 5.3 m³/sec

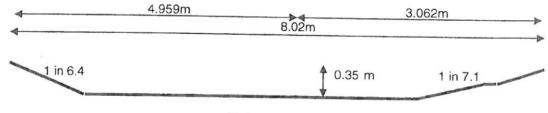
5.387

Chainage 20.0

Open Channel Q100 Calculations Chainage 40 - LOT 14 For Lots 14, 15 & 16

A WP R	2.07 9.95 0.208		Depth of Flow:	350 mm
s	0.05	5%		

$V = 1/n \ge R^{2/3} \ge S^{1/2}$


n 1/n	0.03 33.333	(Manngings: Grass Channel)
R ^{2/3} S ^{1/2}	0.351 0.223607	

V 2.617 m/sec

Q=VA

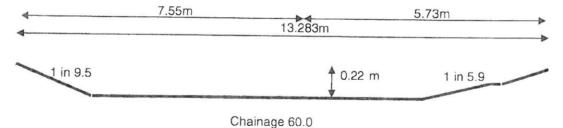
Q

5.4 m³/sec

5.387

Chainage 40.0

Open Channel Q100 Calculations Chainage 60 - LOT 15 For Lots 14, 15 & 16


A WP R	2.3 13.3 0.173		Depth of Flow:	220 mm
S	0.05	5%		
V = 1/r	1 x R ^{2/3} x S	1/2		

n 1/n	0.03 33.333	(Manngings: Grass Channel)
R ^{2/3} S ^{1/2}	0.310 0.223607	

V 2.314 m/sec

Q=VA

Q 5.3 m³/sec

1246

Open Channel Q100 Calculations Chainage 100 - LOTS 15 & 16 For Lots 14, 15 & 16

A WP R	2.02 9.69 0.208	Deptł	n of Flow:	220 mm
S	0.05	5%		
V = 1/r	1 x R ^{2/3} x S	1/2		
n 1/n	0.03 (Ma 33.333	nngings: Grass Cl	hannel)	
R ^{2/3} S ^{1/2}	0.352 0.223607			
v	2.620 m/sec			
Q=VA				
Q	5.3 m ³ /sec	1	5.387	
4		7.87m	9.661m	1.786m

9.661m 1 in 6.1 0.22 m 1 in 4.7

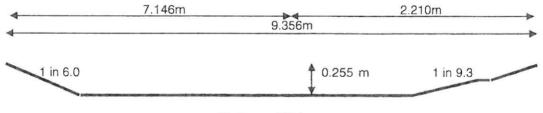
Chainage 100.0

Open Channel Q100 Calculations Chainage 120 - LOT 16 For Lots 14, 15 & 16

A WP R	2.02 9.39 0.215		Depth of Flow:	255 mm
S	0.05	5%		

$V = 1/n \ge R^{2/3} \ge S^{1/2}$

n 1/n	0.03 33.333	(Manngings: Grass Channel)
R ^{2/3} S ^{1/2}	0.359 0.223607	


5.4 m³/sec

V 2.676 m/sec

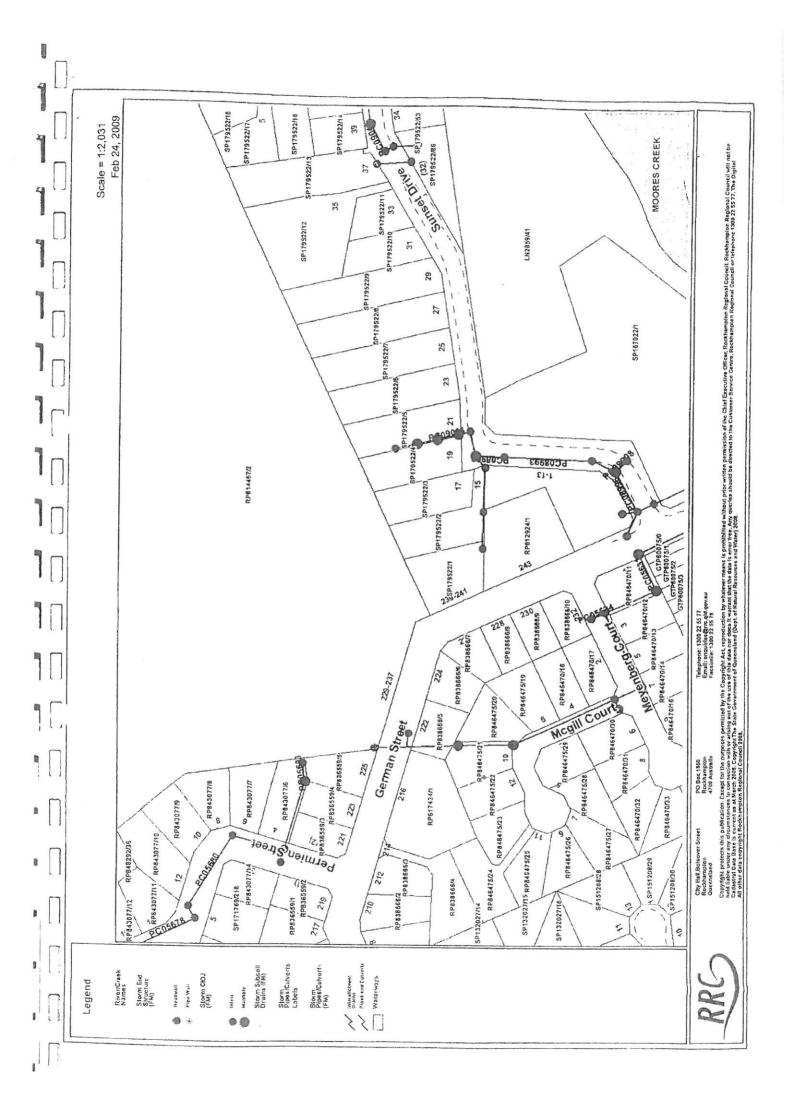
Q=VA

Q

5.387

Chainage 120.0

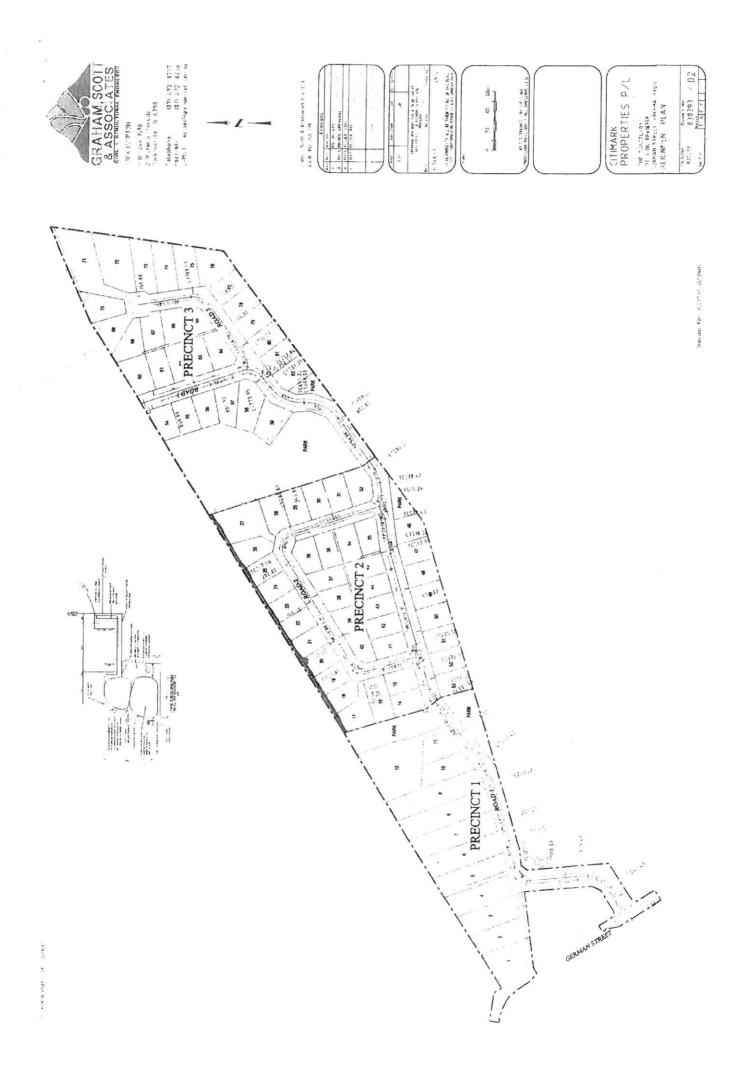
.

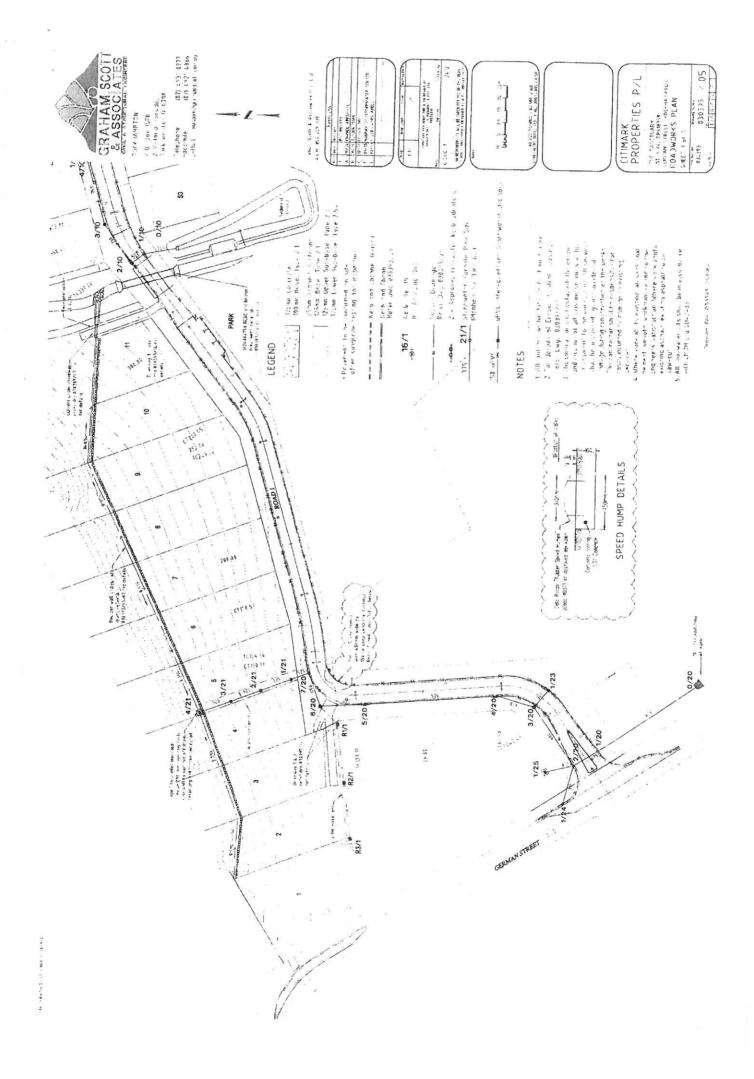

.

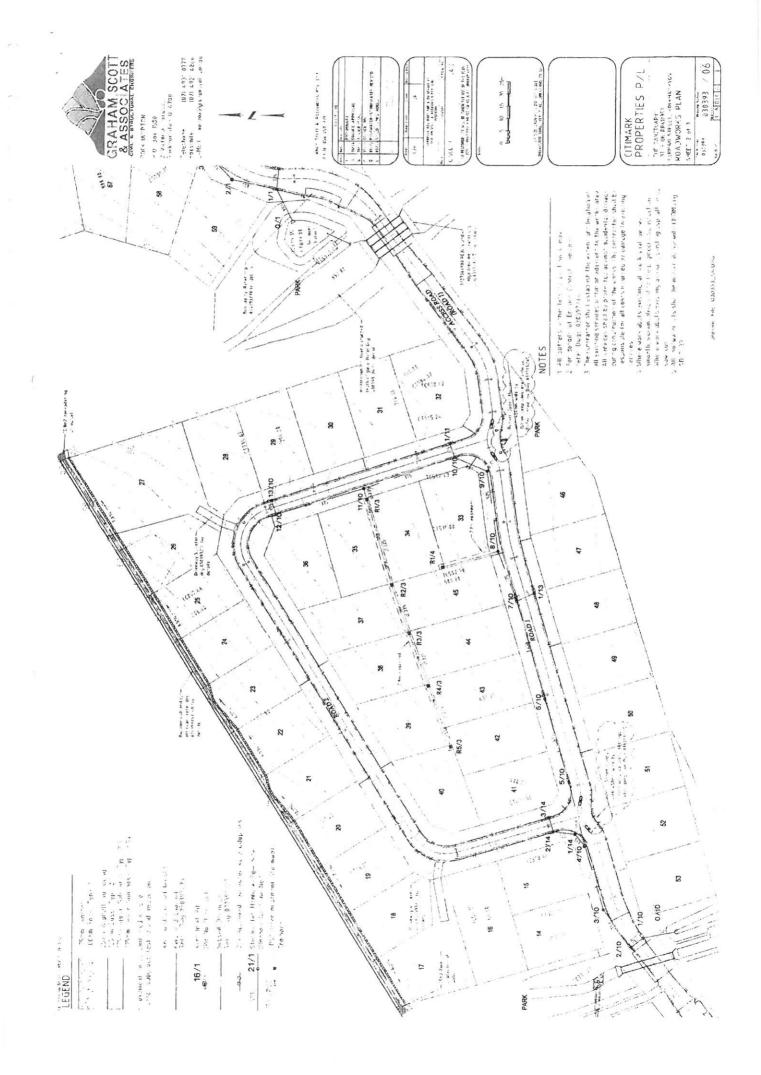
Attachment

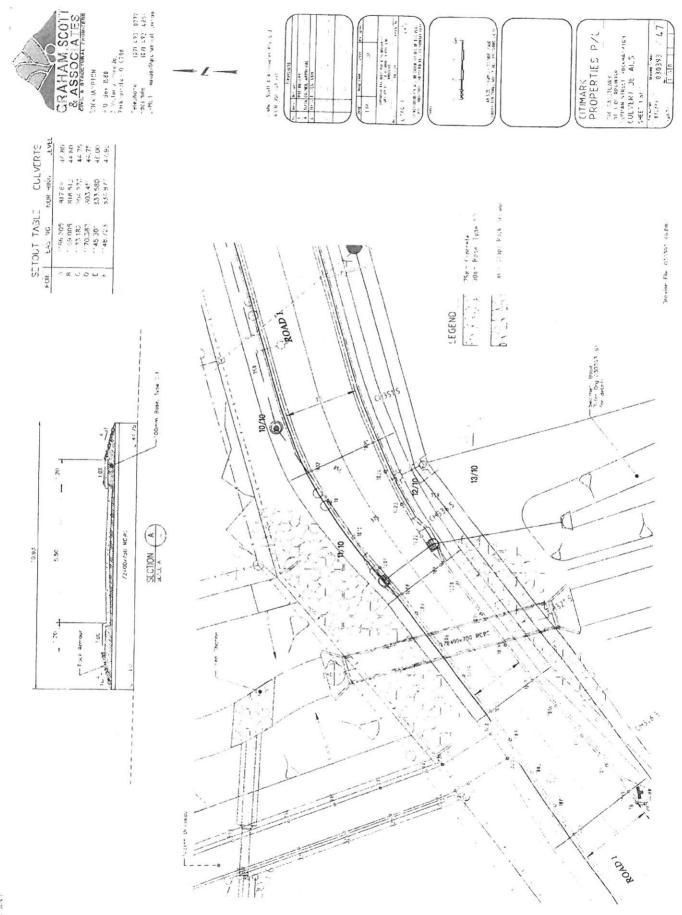
.

E

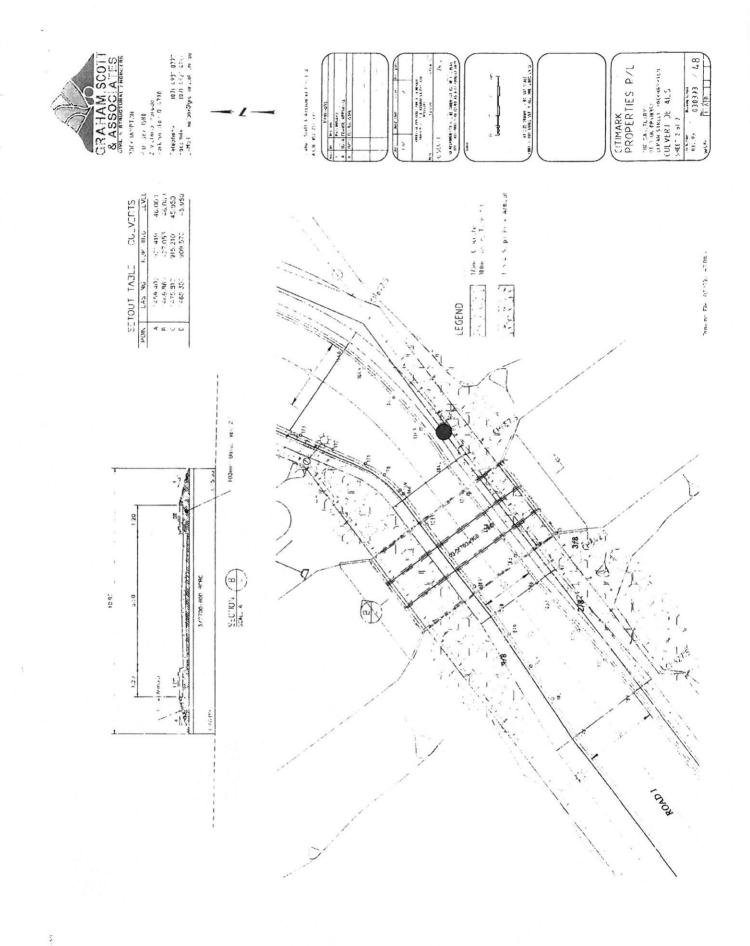





F


.

Attachment



A state to the state of the state of

straint in the cost of measures.

Our Ref 8846sk.08

Contact SAMMY KWOK

10 May 2009

16

16

Mr Mark Wyer McMurtrie Consulting Engineers

E: mail@mcmengineers.com

Dear Mark

SLOPE STABILITY ASSESSMENT PROPOSED RESIDENTIAL SUBDIVISION LOT 2 RP614467 229-237 GERMAN STREET, NORMAN GARDENS

Please find enclosed a copy of our slope stability assessment report for the above project.

Should you have any queries in relation to the enclosed report, please contact the undersigned on 3800 6446.

Yours faithfully

SAMMY KWOK GEOTECHNICAL ENGINEER for Cardno Bowler

Shaping the Future

Hillcrest Queensland 4118 Australia **Telephone: 07 3800 6446** Facsimile: 07 3800 0816 International: +61 7 3800 6446 cardnobowler@cardno.com.au www.cardnobowler.com.au

Cardno Bowler

Cardno Bowler Offices Queensland Brisbane Cairns Townsville Mackay Moranbeh Rockhampton Bundaberg Sunshine Coast Geebung Ipswich Gold Coast New South Wales Sydney Victoria Melbourne Bendigo Dandenong Geelong

ACCREDITATION

ROCKHAMPTON REGIONAL COUNCIL These plans are approved subject to the current

conditions of approval associated with Development Permit No. D 705 /2008 Dated 20/05 610

CARDNO GROUP

Brisbane Sydney Canberra Melbourne Perth Darwin Regional Belgium Brussels Indonesia Jakarta Kenya Nairobi New Zealand Auckland Christchurch Wellington

Papua New Guinea Port Moresby Sri Lanka Colombo United Arab Emirates Abu Dhabi United Kingdom London United States of America Portland Washington Phoenix Sacramento Boise Las Vegas Charlotte

Shaping the Future

Slope Stability Assessment Proposed Residential Subdivision Lot 2 RP614467 229-237 German Street, Norman Gardens Job Number 8846sk.09 Prepared for McMurtrie Consulting Engineers Date of Report 10 May 2009

ABN 74 128 806 735 7/98 Anzac Avenue Hillcrest Queensland 4118 Australia Telephone: 07 3800 6446 Facsimile: 07 3800 0816 International: +61 7 3800 6446 cardnobowler@cardno.com.au www.cardnobowler.com.au

Document Control

Version	Date	Author		Reviewer	
1	10 May 2009	Sammy Kwok	5K	David Stirling	25

"© 2009 Cardno Bowler Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to Cardno Bowler Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of Cardno Bowler Pty Ltd."

100

Table of Contents

1	INTRODUCTION	1
2	SITE DESCRIPTION	2
3	INVESTIGATION WORK	5
	3.1 Background Search 3.2 Fieldwork	5
4	SUBSURFACE CONDITIONS	
5	SLOPE STABILITY ASSESSMENT	1
6	CONSTRUCTION INSPECTIONS	
7	CONCLUSIONS AND RECOMMENDATIONS	

List of Tables

Table 1	Summary of Subsurface Strata
Table 2	Risk Level Implications

List of Figures

Figure 1A	Site Investigation Location Plan of Eastern Block
Figure 1B	Site Investigation Location Plan of Western Block
Figure 2A	Slope Analysis Map of Eastern Block
Figure 2B	Slope Analysis Map of Western Block
Figure 3	Geological Map

Information Sheets

General Notes

Important Information About Your Geotechnical Engineering Report

List of Annexes

Annex A Fieldwork Results Annex B Hazard Rating Assessment

1 INTRODUCTION

A slope stability investigation was carried out for a proposed 34 lot residential subdivision at 229-237 German Street, Norman Gardens as requested by Mark Wyer representing McMurtrie Consulting Engineers.

It was understood that Rockhampton City Council required a site specific investigation report regarding slope stability in areas of the site where slopes were in excess of 15%. It was also requested that, if earthworks are being proposed, it does not cause or increase the risk of landslip occurring.

The following methodology was undertaken in order to achieve the objective above.

- To carry out a structural field mapping exercise.
- To collate and carry out stereographic interpretation from relevant aerial photographs.
- Check with Council to determine if there was any previous slope instability across the site.
- To carry out a slope stability assessment of the site.
- At the completion of the investigation work, an engineering report was prepared which included all the data gathered. The information was analysed and discussed, and conclusions and recommendations presented to satisfy the objectives of the investigation.

This report must be read in conjunction with our attached 'General Notes', the ASFE publication 'Important Information About Your Geotechnical Engineering Report' and 'Guidelines for Hillside Construction', Australian Geomechanics Society Journal, Volume 37, No. 2, May 2002.

2 SITE DESCRIPTION

The subdivision consisted of two separate areas within Lot 2 of RP614467. One area was to the eastern side of this lot and the other to the west. The sites were located at the foot of the Mt Archer Mountain Range. Most of the site areas were a combination of grassland and bushland. It was noted that two disused old dams existed at the eastern block and an old demolished dwelling existed at the western block. Access to most part of the steeper areas of site was barely accessible by a 5 tonne excavator. Two major gullies were observed at the eastern block which diverged to one gully at the southern side.

The site was thickly grassed and sparsely treed. The site areas consisted of variable slopes which generally increased in steepness towards the northern part of the site. Most proposed allotments are to be situated on platforms with a slope of between 0% to 25% with several blocks having slopes in excess of 30%. Drainage of the area was good.

Refer to the following plates for typical views of the site:-

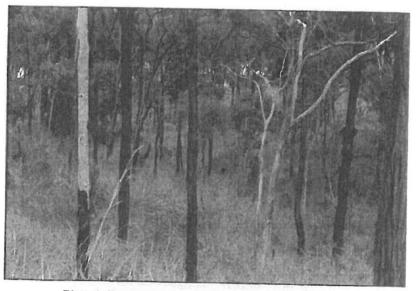


Plate 1: Typical bushland view of the eastern block

12

13

100

-

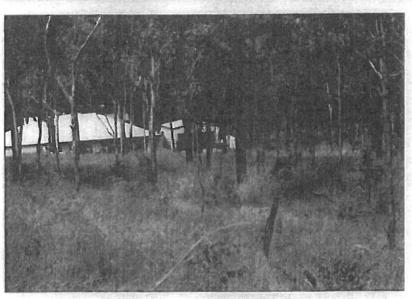


Plate 2: Typical view of the eastern block looking south

Plate 3: Typical bushland view of the eastern block

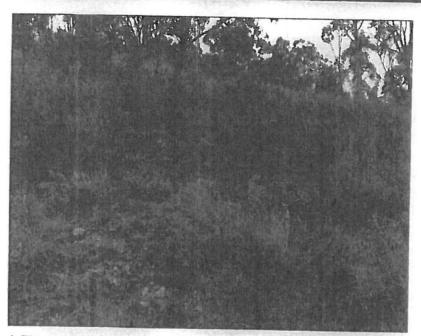


Plate 4: The steeper area of the western site. Rock at surface at some allotments.

3 INVESTIGATION WORK

3.1 Background Search

As part of the slope stability assessment for the site, Rockhampton City Council was liaised with to determine if there was any record of previous instability on site.

A historical aerial photographic interpretation at selected years, using stereographic projection, was carried out to assess if any physical evidence of previous landslips on the site could be observed.

3.2 Fieldwork

Fieldwork for the investigation was carried out on the 8 April 2009 and included the excavation of 12 test pits as shown on the attached site sketch, Figure 1A and 1B. The material encountered at each location is described on test pit log sheets included in Annex A.

A structural mapping exercise, 'site walkover' was also carried out by a Geotechnical Engineer on the 8 April 2009.

Fieldwork was carried out in accordance with Australian Standard, AS1726-1993 'Site Investigation Code', and the State Planning Policy 1/03 'Mitigating the Adverse Impacts of Flood, Bushfire and Landslide'.

-

4 SUBSURFACE CONDITIONS

Regional Geology

The Geological Survey of Queensland's 1:250,000 Series '*Rockhampton*' Geological map indicates that the site is underlain by the Berserker Beds which consist of acid lapilli tuff, vitric and crystal tuff, andesitic and acid flows, agglomerate, tuffaceous, conglomerate, mudstone and lithic arenite. Refer to Figure 3 for an extract of the site's geological map.

The weathered rock encountered during the fieldwork is considered typical of the Berserker Bed.

Fieldwork Results

The fieldwork indicated that, generally at the investigation locations, relatively similar subsurface strata was encountered.

Generally, a layer of topsoil was encountered overlying predominantly residual silty clay or clayey sand material. Extremely to distinctly weathered rock was encountered to test pit termination depths of between 0.5m and 1.5m.

Some of the residual soils were observed to be mixed with some weathered rock fragments. Suspected colluvium existed at TP8 to a depth of 0.6m.

The logs in Annex A should be referred to for the detailed description of material encountered at each investigation location. A summary of conditions encountered at each investigation location is detailed in Table 1 below.

TP	Topsoil			Natural	New York Company	TD	
No.	Silty Clay	Colluvium	Re	sidual	XW/DW		
	a series	Silty Clay	Silty Clay	Clayey Sand	Weathered Rock		
1	0.0-0.1	-	0.1-0.6	-	0.6-TD	1.1(1)	
2	0.0-0.2		0.2-1.4	-	1.4-TD	1.5(1)	
3	0.0-0.2	-	0.2-0.9		0.9-TD	1.5(1)	
4	0.0-0.3	-	0.3-0.6	•	0.6-TD	1.1(1)	
5	0.0-0.2		0.2-0.8	-	0.8-TD	1.3(1)	
6	0.0-0.2	-	0.2-0.6	0.6-1.2	1.2-TD	1.5(1)	
7	0.0-0.1	-	0.1-0.9	•	0.9-TD	1.5(1)	
8	0.0-0.1	0.1-0.6	0.6-1.0	1.0-1.2	1.2-TD	1.4(1)	
9	0.0-0.1	-	0.1-0.2	-	0.2-TD	0.5 ⁽¹⁾	
10	0.0-0.1	-	0.1-0.4	-	0.4-TD	0.8(1)	
11	0.0-0.1	-		0.1-0.3	0.3-TD	0.7(1)	
12	0.0-0.1	•	0.1-0.3	-	0.3-TD	0.8 ⁽¹⁾	

Table 1 Summary of Subsurface Strata

NOTES:

8

13

E

100

J

E

- 1. Bucket refusal with a 5 tonne excavator on weathered rock.
- 2. All depths measured in metres below ground level at the time of the investigation on the 8 April 2009.
- 3. TD = Termination Depth.

No groundwater was encountered in any of the test pits during the investigation. However, it is possible that seepage could occur along the sand-clay and soil-rock interfaces during and after periods of wet weather.

5 SLOPE STABILITY ASSESSMENT

The fieldwork exercise included a broadscale inspection, where possible, of the entire site to assess the following;

- Determine slope angle
- Observe vegetation
- Note any evidence of tension cracking
- Note any evidence of seepage
- Note any evidence of soil creep
- Note any evidence of previous slips
- Geological features
- Subsurface conditions
- Drainage issues

Based on the information provided by the client, we understood that a majority of the site will remain relatively unchanged. No major fill is proposed across the site except at the head of each proposed cul-de-sac where some fill and/or retaining wall may be constructed. Construction of sewer and roofwater trenching will be required in areas between 15% and 25%. A majority of the roads were proposed on areas less than 15% slope.

It was also noted that diversion drains will be constructed along the northern boundary of the sites to divert all stormwater originating up slope from the sites into the gully and not to the allotments.

The following drawings were supplied and used during our analysis:

Ref: 2112-08, Rev B - Slope Map of Eastern Block (Schlencker Surveying)

Ref: 2112-08, Rev B - Slope Map of Western Block (Schlencker Surveying)

Ref: 2112-07E Sh4 - Proposed Stormwater Diversion Map of Western Block (Schlencker Surveying)

Ref: 2112-07E Sh5 - Proposed Stormwater Diversion Map of Eastern Block. (Schlencker Surveying)

Aerial photographs were also obtained and analysed to determine if any obvious slip areas were evident. The following aerial photos were reviewed:

- Rockhampton, QAP6040, Run 10, Frame 64, 2004
- Ridgeland, QAP5222, Run 10, Frame 21, 1994
- Rockhampton, QAP4223, Run 1, Frame 53, 1983
- Rockhampton, Q1587, Run 1, Frame 3409, 1964
- Rockhampton, QAP615, Run 4, Frame 16, 1956

During our interpretation, no physical evidence was noted across the site to indicate that the site had undergone any previous instability. Vegetation across the sites varied over the years reviewed.

The slope angles on site varied. Most allotments are to be situated on platforms with a slope of between 0% to 25% with several blocks having slopes in excess of 30%.

Some minor soil creep within the steep drainage gullies was observed. However, no significant physical evidence of previous movement, seepage, soil creep etc was observed during the mapping exercise across the site in its current state.

Proposed earthworks levels and building house pad locations were not known at this time. However, it is recommended that any cut/filling construction be restricted to the area where **natural** slope angles are less than 25% and where residual soils/weathered rock existed. This cut and fill should be limited to heights not exceeding 1m without more detailed geotechnical investigation work. Where slopes exceed 25%, it is recommended that no cut/fill be undertaken without detailed geotechnical assessment. This includes areas at the end of the proposed cul-de-sac where slopes are to be greater than 25% and some fill and retaining walls will be constructed.

It is recommended that removal of vegetation (with the exception of topsoil stripping) be kept to a minimum and that any vegetation removal only be undertaken where it is necessary in order to construct building platforms.

Refer to Figure 2 for an overall view of the site in relation to slope percentage.

Background Search

Rockhampton City Council was contacted to determine if there are any record of instability at the subject site. We were informed that no record of instability was available from the Council regarding the site.

Drainage

The stability of individual lots will largely be a function of adequate drainage control on each individual site. Therefore, it is assumed that stormwater management will be designed and constructed in accordance with recognised building practices/standards to control all drainage issues.

Hazard Rating

An indicative quantitative hazard rating has been assigned to the sites based on the test pits excavated and site walkover, the results of which provided a range of relative frequencies of between 0.189 to 0.567. This indicates the site has a *'very low'* to *'low'* likelihood of instability for the site. Detailed calculations of frequency analysis for TP8 (worst) and TP9 (best) are attached in Annex B.

Refer to Table 2 below for typical implications with respect to 'risk' level.

Table 2 Risk Level Implications

12	Risk Level	Example Implications (1)
VH	VERY HIGH RISK	Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to acceptable levels; may be too expensive and not practical
н	HIGH RISK	Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable levels
М	MODERATE RISK	Tolerable provided treatment plan is implemented to maintain or reduce risks. May be accepted. May require investigation and planning of treatment options.
L	LOW RISK	Usually accepted. Treatment requirements and responsibility to be defined to maintain or reduce risk.
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures

Notes:

- 1. The implications for a particular situation are to be determined by all parties to the risk assessment; these are only given as a general guide.
- 2. Judicious use of dual descriptors for Likelihood, Consequence and Risk to reflect the uncertainty of the estimate may be appropriate in some cases.

Considering the investigation results, and provided that all the above measures are carried out, all lots would be considered suitable and feasible for development.

The development on the sites is not expected to adversely affect the current stability of adjoining properties provided the recommendations above are adhered to and adequate civil/hydraulic and structural issues are addressed.

It is recommended that all proposed cut/fill levels for individual building pad construction and major retaining walls (in particularly lots with a moderate to high risk of instability) be reviewed and analysed prior to the commencement of any earthworks to confirm that a theoretical stability factor of safety (FOS) against failure of \geq 1.5 can be achieved. Further, during the construction phase of the project, A geotechnical consultant should be engaged to inspect the cut/fill batters and certify that the required FOS can be achieved or whether remediation works are required.

6 CONSTRUCTION INSPECTIONS

It is recommended that placement of all structural fill and cut/fill batters be inspected, tested and certified where necessary, to ensure recommendations made in this report have been adhered to.

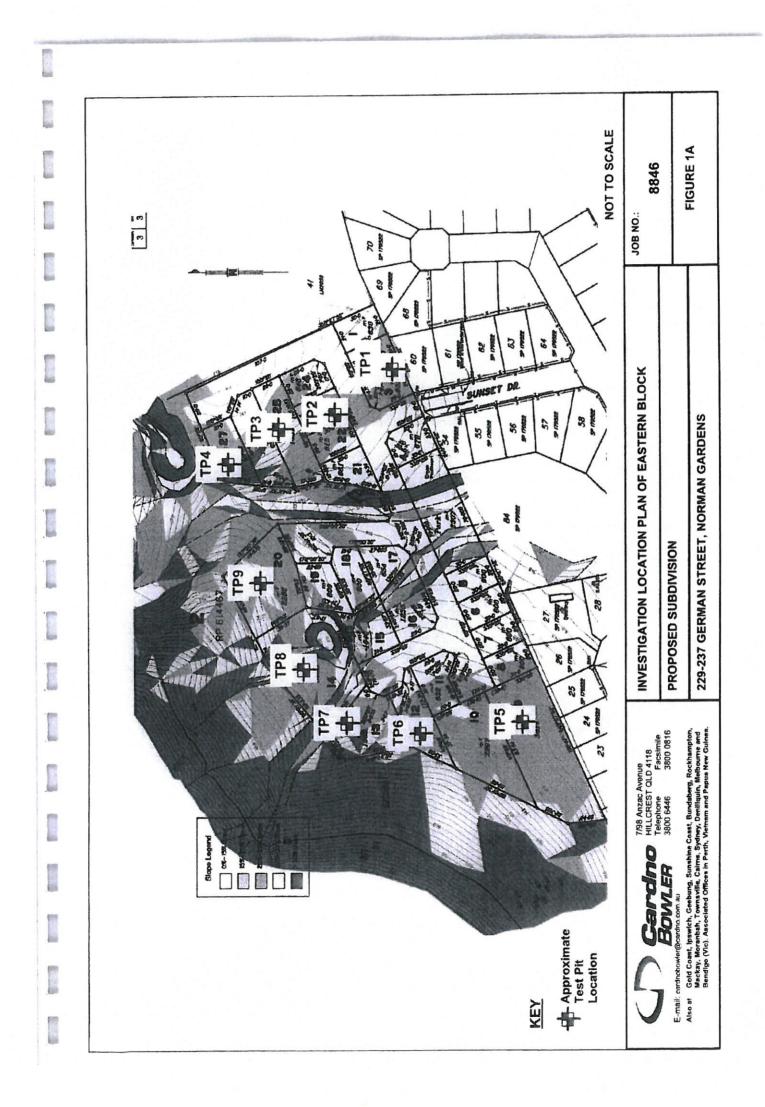
Should subsurface conditions other than those described in this report be encountered, a geotechnical consultant should be consulted immediately and appropriate modifications developed and implemented if necessary.

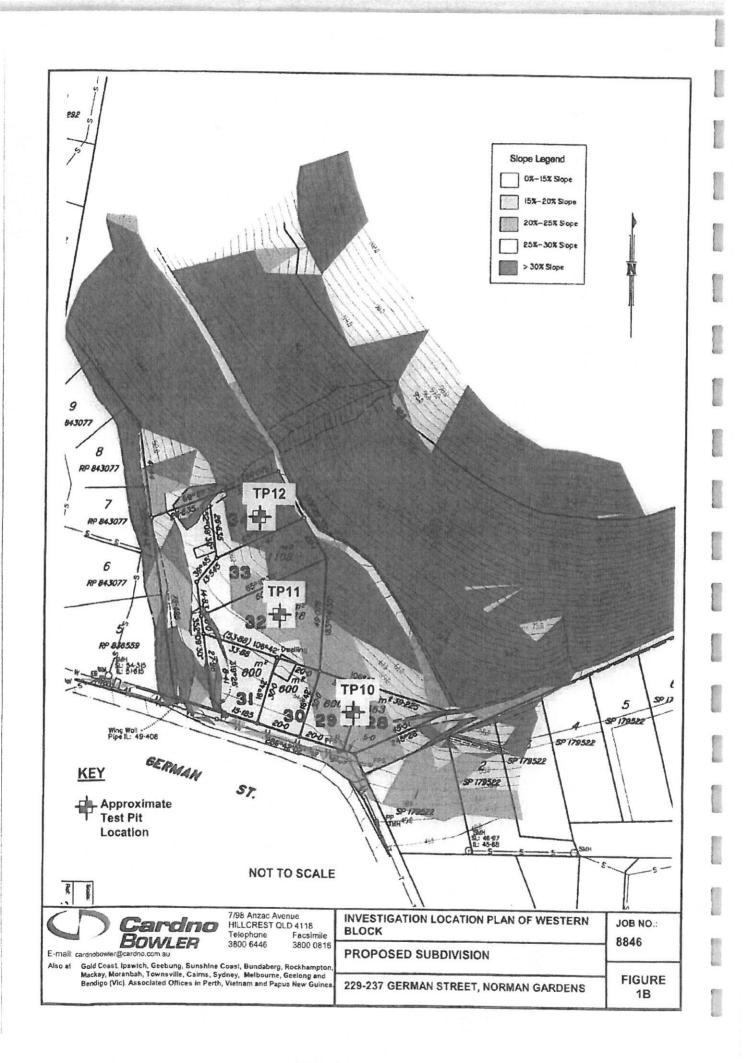
1

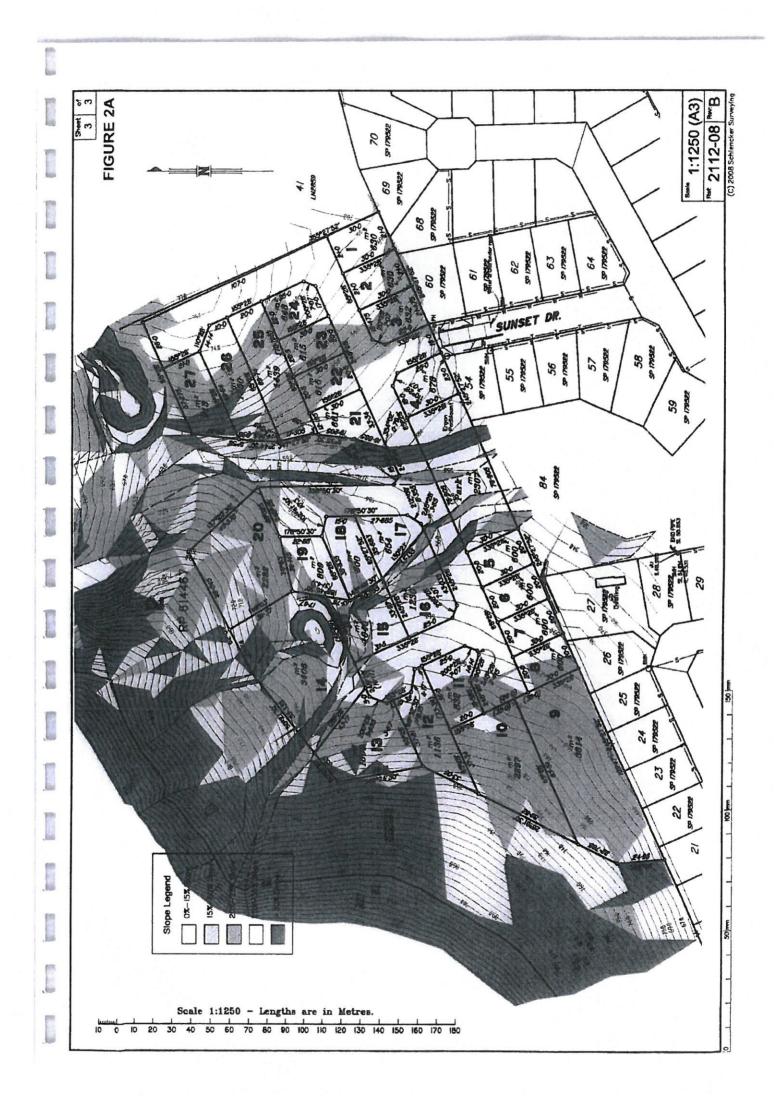
E

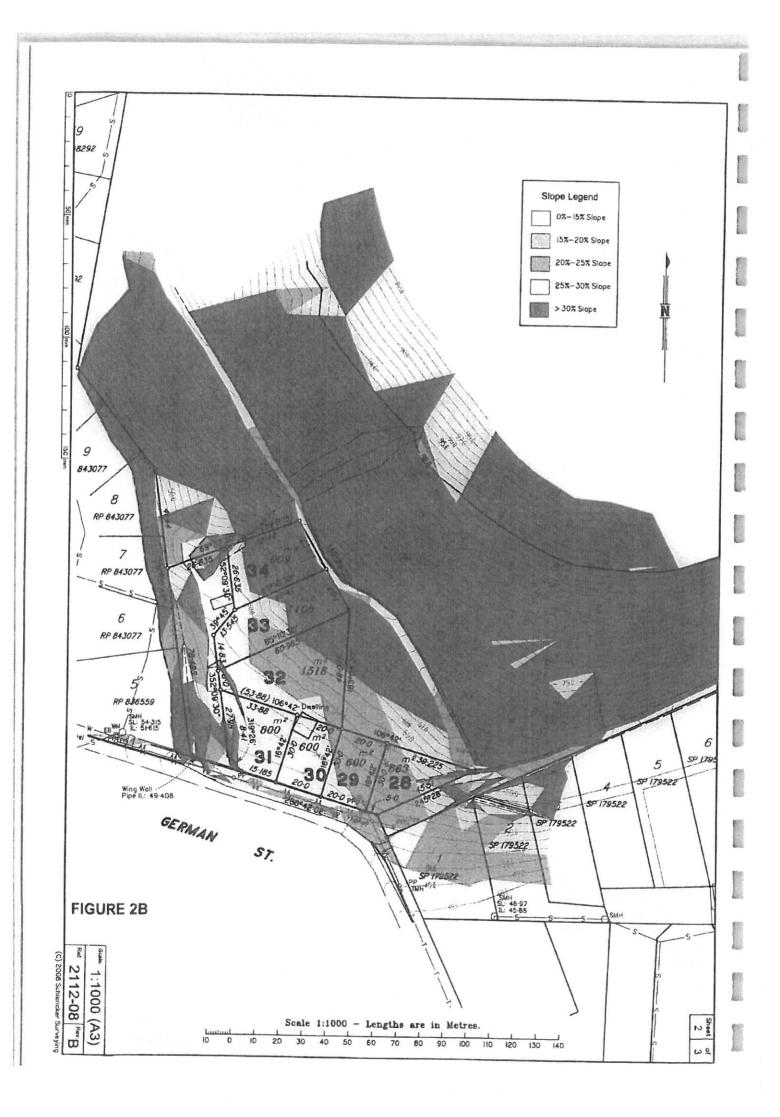
Contraction of the second

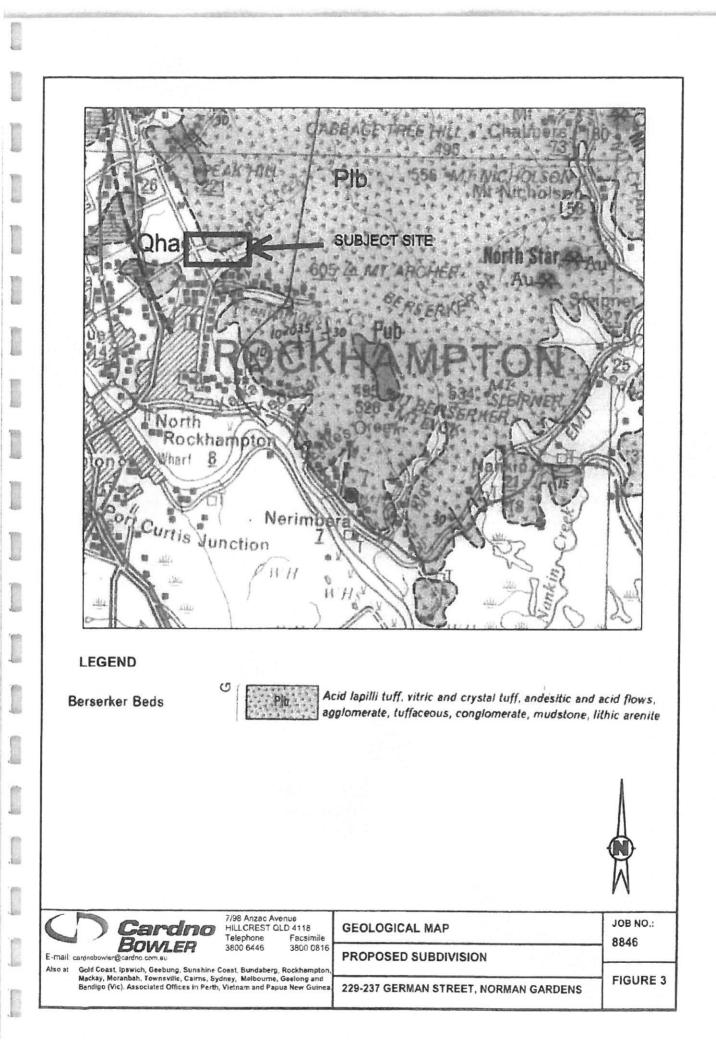
7 CONCLUSIONS AND RECOMMENDATIONS


The following conclusions and recommendations are made in regard to the slope stability investigation for the proposed residential subdivision at 229-237 German Street, Norman Gardens. However, the preceding sections of this report should be read for a full description of the conclusions and recommendations.


- The subsurface conditions, at the investigation locations generally consisted of topsoil over residual silty clay or clayey sand material overlying weathered rocks at depth. Some colluvium was encountered to 0.6m at TP8.
- Based on our site walkover, no signs of previous significant instability was observable. Only some minor soil creep within the steep draining gullies existed.
- 3. The background aerial photo search showed no physical evidence of previous slips or instability across the site.
- 4. Based on our indicative quantitative hazard rating assessment across the sites, the site varies in likelihood of instability from 'very low' risk to 'low' risk.
- 5. Effective drainage control at each lot will be critically important for slope stability. It is assumed that stormwater management will be designed and constructed in accordance with recognised building practices to control all drainage issues.
- 6. It is recommended that all proposed cut/fill levels and retaining walls, be reviewed and analysed by a geotechnical consultant prior to commencement of any earthworks.


Yours faithfully


SAMMY KWOK GEOTECHNICAL ENGINEER


DAVID STIRLING SENIOR GEOTECHNICAL ENGINEER

GENERAL NOTES

GENERAL

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the introduction section(s) of the document. The report should not be used by other parties or for other purposes as it may not contain adequate or appropriate information.

TEST HOLE LOGGING

The information on the Test Hole Logs (Boreholes, Backhoe Pits, Exposures etc.) has been based on a visual and tactile assessment except at the discrete locations where test information is available (field and/or laboratory results).

Reference should be made to our standard sheets for the definition of our logging procedures (Soil and Rock Descriptions).

GROUNDWATER

Unless otherwise indicated the water levels given on the test hole logs are the levels of free water or seepage in the test hole recorded at the given time of measuring. The actual groundwater level may differ from this recorded level depending on material permeabilities. Further variations of this level could occur with time due to such effects as seasonal and tidal fluctuations or construction activities. Final confirmation of levels can only be made by appropriate instrumentation techniques and programmes.

INTERPRETATION OF RESULTS

The discussion and recommendations contained within this report are normally based on a site evaluation from discrete test hole data. Generalised or idealised subsurface conditions (including any cross-sections contained in the report) have been assumed or prepared by interpolation/extrapolation of these data. As such these conditions are an interpretation and must be considered as a guide only.

CHANGE IN CONDITIONS

Local variations or anomalies in the generalised ground conditions used for this report can occur, particularly between discrete test hole locations. Furthermore, certain design or construction procedures may have been assumed in assessing the soil structure interaction behaviour of the site.

Any change in design, in construction methods, or in ground conditions as noted during construction, from those assumed in this report should be referred to this firm for appropriate assessment and comment.

FOUNDATION DEPTH

Where referred to in the report, the recommended depth of any foundation (piles, caissons, footings, etc.) is an engineering estimate of the depth to which they should be constructed. The estimate is influenced and perhaps limited by the fieldwork method and testing carried out in connection with the site investigation, and other pertinent information as has been made available. The depth remains, however, an <u>estimate</u> and therefore liable to variation. Footing drawings, designs and specifications based upon this report should provide for variations in the final depth depending upon the ground conditions at each point of support.

REPRODUCTION OF REPORTS

Where it is desired to reproduce the information contained in this report for the inclusion in the contract documents or engineering specification of the subject development, such reproduction should include at least all the relevant test hole and test data, together with the appropriate standard description sheets and remarks made in the written report of a factual or descriptive nature.

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this firm.

CARDNO GROUP

Brisbane Sydney Canberra Melbourne Perth Darwin Regional Belgium Brussels Indonesia Jakarta Kenya Nairobi New Zealand Auckland Christchurch Wellington Papua New Guinea Fort Moresby Sri Lanka Colombo United Arab Emirates Abu Dhabi United Kingdom London United States of America Portland Washington Phoenix Sacramento Bolse Las Vegas Charlotte

Cardno Bowler Pty Ltd ABN 74 128 806 735

Cardno

BOWLER

Shaping the Future

7/98 Anzac Avenue Hillcrest Queensland 4118 Australia

Telephone: 07 3800 6445 Facsimile: 07 3800 0816 International: +61 7 3800 6446 admin@bowler.com.au www.cardno.com.au

Cardno Bowler Offices

Queensland Brisbane Calms Townsville Mackay Rockhampton Bundaberg Sunshine Coast Gold Coast New South Wales Sydney Denliiquin Victoria Melbourne Bendioo

Dandenono

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL ENGINEERING REPORT

More construction problems are caused by site subsurface conditions that any other factor. As troublesome as subsurface problems can be, their frequency and extent have been lessened considerably in recent years, due in large measure to programs and publications of ASFE / The Association of Engineering Firms Practicing in the Geosciences.

The following suggestions and observations are offered to help you reduce the geotechnical-related delays costoverruns and other costly headaches that can occur during a construction project.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

A geotechnical engineering report is based on subsurface exploration plan designed to incorporate a unique set of project-specific factors. These typically include the general nature of the structure involved, its size and configuration; the location of the structure on the site and its orientation; physical concomitants such as access roads, parking lots and underground utilities, and the level of additional risk which the client assumed by virtue of limitations imposed upon the exploratory program. To help avoid costly problems, consult the geotechnical engineer to determine how any factors which change subsequent to the date of the report may affect its recommendations.

Unless your consulting geotechnical engineer indicates otherwise, your geotechnical engineering report should not be used:

- When the nature of the proposed structure is changed, for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one;
- when the size or configuration of the proposed structure is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership, or
- for application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems which may develop if they are not consulted after factors considered in their report's development have changed.

MOST GEOTECHNICAL "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site exploration identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent testing are extrapolated by geotechnical engineers who then render an opinion about overall subsurface conditions, their likely reaction to proposed construction activity and appropriate foundation design. Even under optimal circumstances actual conditions may differ from those inferred to exist, because no geotechnical engineer, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predications. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise their impact. For this reason, most experienced owners retain their geotechnical consultants through the construction stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Subsurface conditions may be modified by constantly changing natural forces. Because a geotechnical engineering report is based on conditions which existed at the time of subsurface exploration, construction decisions should not be based on a geotechnical engineering report whose adequacy may have been affected by time. Speak with the geotechnical consultant to learn if additional tests are advisable before construction starts.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations may also affect subsurface conditions and thus, the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept apprised of any such events, and should be consulted to determine if additional test are necessary.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Geotechnical engineers' reports are prepared to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Unless indicated otherwise, this report was prepared expressly for the client involved and expressly for purposes indicated by the client. Use by any other persons for any purpose, or by the client for a different purpose, may result in problems. No individual other than the client should apply this report for its intended purpose without first conferring with the geotechnical engineer. No person should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical engineering report. To help avoid these problems, the geotechnical engineer should be retained to work with other appropriate design professionals to explain relevant geotechnical findings and to review the adequacy of their plans and specifications relative to geotechnical issues.

BORING LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final boring logs are developed by geotechnical engineers based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final boring logs customarily are included in geotechnical engineering reports. These logs should not under any circumstances be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimize the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To minimize the likelihood of boring log misinterpretation, give contractors ready access to the complete geotechnical engineering report prepared or authorized for their use*. Those who do not provide such access may proceed under the mistaken impression that simply disclaiming

For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by The Institution of Engineers Australia, National Headquarters, Canberra, 1987. responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes which aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because geotechnical engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against geotechnical consultants. To help prevent this problem, geotechnical engineers have developed model clauses for use in written transmittals. These are not exculpatory clauses designed to foist geotechnical engineers' liabilities onto someone else. Rather, they are definitive clauses which identify where geotechnical engineers' responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your geotechnical engineering report, and you are encouraged to read them closely. Your geotechnical engineer will be pleased to give full and frank answers to your questions.

OTHER STEPS YOU CAN TAKE TO REDUCE RISK

Your consulting geotechnical engineer will be pleased to discuss other techniques which can be employed to mitigate risk. In addition, ASFE has developed a variety of materials which may be beneficial. Contact ASFE for a complimentary copy of its publications directory.

Published by

THE ASSOCIATION OF ENGINEERING FIRMS PRACTICING IN THE GEOSCIENCES

8811 Colesville Road / Suite G106 / Silver Spring Maryland 20910/(301) 565-2733

SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

POOR ENGINEERING PRACTICE GOOD ENGINEERING PRACTICE ADVICE GEOTECHNICAL Obtain advice from a qualified, experienced geotechnical consultant at early Prepare detailed plan and start site works before ASSESSMENT stage of planning and before site works. geotechnical advice. PLANNING Plan development without regard for the Risk. SITE PLANNING Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind. DESIGN AND CONSTRUCTION Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. HOUSE DESIGN Floor plans which require extensive cutting and filling. Consider use of split levels. Monor ant intolerant structures. Use docks for recreational areas where appropriate SITE CLEARING Indiscriminately clear the site. Retain natural vegetation where ver practicable. Satisfy requirements below for cuts, fills, retaining walls and drainage. Excavate and fill for site access before ACCESS & DRIVEWAYS Council specifications for grades may need to be modified geotechnical advice. Driveways and parking areas may need to be fully supported on piers. EARTHWORKS Indiscriminant bulk earthworks. Retain natural contours where ver possible. CITS Minimise depth. Large scale cuts and beaching. Support with engineered retaining walls or batter to appropriate slope. Unsupported cuts. Provide drainage measures and erosion control. Ignore drainage requirements Loose or poorly compacted fill, which if it fails, may flow a considerable distance including PILS Minimise height. Strip vegetation and topsoil and key into natural slopes prior to filling. onto property below. Use clean fill materials and compact to engineering standards. Batter to appropriate slope or support with engineered retaining wall. Provide surface drainage and appropriate subsurface drainage. Block natural drainage lines. Fill over existing vegetation and topsoil Inch ide stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill. Disturb or undercut detached blocks or ROCK OUTCROPS Remove or stabilise boulders which may have unacceptable risk. & BOULDERS Support rock faces where necessary. boulders. RETAINING Engineer design to resist applied soil and water forces. Construct a structurally inadequate wall such as WALLS ad on rock where practicable. adstane flagging, brick or unreinforced Provide subsurface drainage within wall backfill and surface drainage on slope block work Lack of subsurface drains and weepholes. above Construct wall as soon as possible after cut/fill operation. Found within rock where practicable. POOTINGS Found on topsoil, loose fill, detached boulders Use rows of piers or strip footings oriented up and down slope. or undercut cliffs. Design for lateral creep pressures if necessary. Backfill footing excevations to exclude ingress of surface water SWIMMING POOLS Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no interal support on downhill side DRAINAGE SURFACE Provide at tops of cut and fill slopes. Discharge at top of fills and cuts. Discharge to street drainage or matural water courses. Provide general falls to prevent blockage by siltation and incorporate silt traps Allow water to pond on bench areas. Line to minimize infiltration and make flexible where possible Special structures to dissipate energy at changes of slope and/or direction Provide filter around subsurface drai Provide drain behind retaining walls SUBSURFACE Discharge roof runoff into absorption trenches Use flexible pipelines, with access for maintenance. Prevent inflow of surface water. SEPTIC & Usually requires pump-out or mains sewer systems; absorption trenches may Discharge sullage directly onto and into slopes. be possible in some areas if risk is acceptable. Use absorption trenches without consideration of landslide risk. SULLACE Storage tanks should be water-tight and adequately founded. FROSION Control crosson as this may lead to instability. Pailure to observe earthworks and drainage Revegetiste cleased area. recommendations when landscaping. CONTROL & LANDSCAPING DRAWINGS AND SITE VISITS DURING CONSTRUCTION Building Application drawings should be viewed by geotechnical consultant DRAWINGS SITE VISITS Site Visits by consultant may be appropriate during construction/ INSPECTION AND MAINTENANCE BY OWNER OWNER'S Clean drainage systems; repair broken joints in drains and leaks in supply RESPONSIBILITY pipes. Where structural distress is evident see advice. If scepage observed, determine causes or seek advice on consequences.

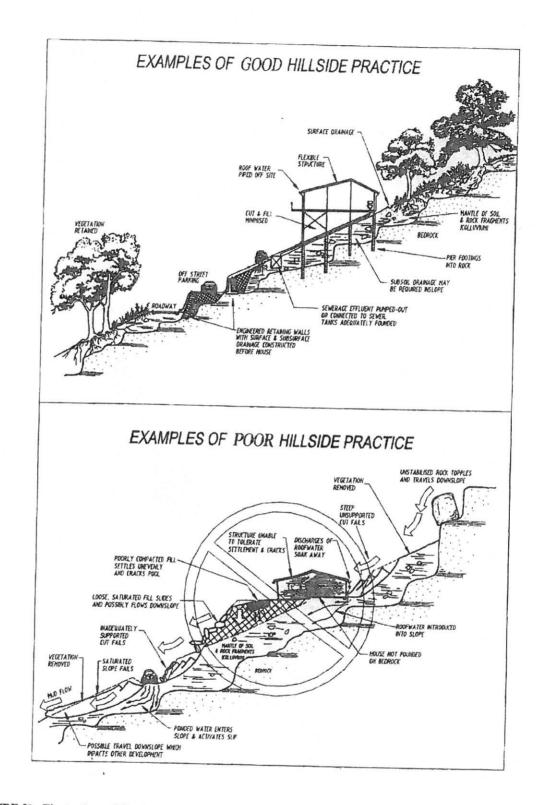
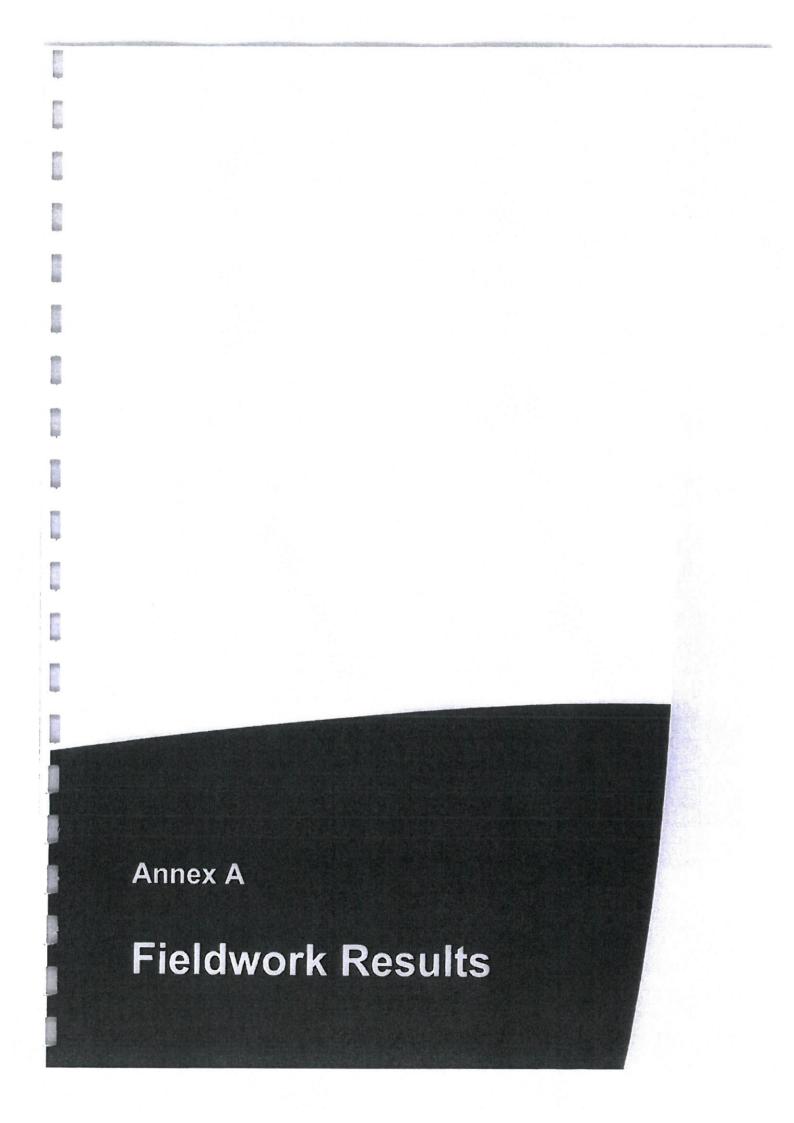



FIGURE J1: Illustrations of Good and Poor Hillside Practice

September, 2001

SOIL DESCRIPTION

This procedure involves the description of a soil in terms of its visual and tactile properties, and relates to both laboratory samples and field exposures as applicable. A detailed soil profile description, in association with local geology and experience, will facilitate the initial (and often complete) site assessment for engineering purposes.

The method involves an evaluation of each of the items listed below and is in general agreement with the Site Investigation Code AS1726-1993.

SOIL TYPE

The soil is described on the basis of the grain size composition of the constituent particles, and the plasticity of the fraction of material passing the 425µm

Furthermore, as most natural soils are part combinations of various constituents, the primary soil is described and modified by minor components. In brief,

the second s	R CLAY AS MINOR COMPONENT	GRAVEL OR SAND AS MINOR COMPONENT						
% Fines	Modifier	% Coarse	Modifier					
≤5 >5 ≤12 >12	omit, or use "trace" describe as "with clay/silt" as applicable prefix soil as "silty/clayey" as applicable	≤15 >15 ≤30 >30	omit, or use "trace" describe as "with sand/gravel" as applicable prefix soil as "sandy/gravelly' as applicable					

For soils containing both sand and gravel the minor coarse fraction is omitted if less than 15%, or described as "with sand/gravel" as applicable when Note:

The appropriate classification group symbol for soil classification is also given before the soil type description in accordance with AS1726-1993, Table A1.

For granular soils, an assessment of grading (well, uniform, gap or poor), particle size (fine, medium etc), angularity, shape and particle composition may also

COLOUR

Colour is important for correlation of data between test holes and for subsequent excavation operations. The prominent colour is noted, followed by (spotted, mottled, streaked etc.) secondary colours as applicable. Colour should be described in the "moist" condition, though both wet and dry colours may also be

MOISTURE

 MOISTURE.

 The moisture condition of the soil is described by the appearance and feel of the soil using one of the following terms:

 Dry
 cohesive soils - hard, friable or powdery; granular soils - cohesionless, free funning,

 Moist
 soil cool, darkened colour: cohesive soils - can be moulded; granular soils - tend to cohere.

 Wet
 soil cool, darkened colour: cohesive soils - usually weakened, free water on hands when handling; granular soils - tend to cohere.

In addition, the presence of any seepage or free water is noted on all test hole logs.

CONSISTENCY/RELATIVE DENSITY

Granular soils are generally described in terms of relative density (density index) as listed in Table A5 AS1726. These soils are inherently difficult to assess and normally a penetration test procedure (SPT, DCP or CPT) is used in conjunction with published correlation tables. Alternatively, insitu density tests can be conducted in association with minimum and maximum densities performed in the laboratory.

Cohesive soils can be assessed by direct measurement (shear vane), or estimated approximately by tactile means and/or the aid of a geological pick as given on the following table. It is emphasised that a "design shear strength" must take cognisance of the insitu moisture content and the possible variations of

Term	Tactile Properties	Undrained Shear Strength (kPa)
Very Soft Soft	Exudes between the fingers when squeezed in the hand. Easily penetrated by thumb about 30-40mm. Pick head can be pushed in up to shaft. Moulded by light finger pressure.	≤12 >12 ≤25
Firm	Penetrated by thumb 20-30mm with moderate effort. Sharp end of pick pushed in some 30-40m. Moulded by strong finger pressure	>25 ≤50
Stiff	Cannot be moulded in fingers	>50 ≤100
Very Stiff	Readily indented by thumb nail. Slight indentation produced by pushing pick into soil.	>100 ≤200
Hard	Difficult to indent with thumb nail. Requires power tools for excavation.	>200

STRUCTURE/OTHER FEATURES

The structure of the soil may be described with reference to: zoning, where soils consist of separate zones differing in colour, grain size or other properties; observations including fissures, cracks, root-holes and the like; cementing, with the strength (weakly to strongly), and nature of the cementing agent; additional observations including geological origin, odour and the like. In addition, the presence of other features (ferricrete nodules, organic inclusions) should also be noted as applicable

Ciler Proje Loca	ec	t:	ı.	- 3	PF	20	POS	ED RE	SIDE	NTIAL ROCKI	SUB	DIM	SION				Hole No: TP1
			_	-	-	-				IGURE		101	•			_	Iob No: 8846 Sheet: 1 of 1 Angle from Horizontal: 90° Surface Elevation: 1
	-		-	11.11	-	100			cavat								Excavation Method: Operator:
Exce	ava	at	or)in	ne	nsio		50 m	WIDE						-	Contractor: CARDNO BOWLER PTY LTD
Date	S	-	-	-	-	8/	4/09		Date	e Com	plete	d: 1	8/4/09)		L	ogged By: SK Date Logged: 8/4/09
Depth (m)	Auger V Bit	T	Wachhora	T	Casing	Conng	Groundwater (m)		Sample Field Te		Recovered	DCP	RL (m AHD)		Log	USCS Symbol	Description (SYMBOL, SOIL NAME, plasticity/particle characteristics, colour, minor components, moisture, consistency, structure, ORIGIN)
		-	+	1												сн	SILTY CLAY, high plasticity, dark grey, moist, with gravel, grass root zone, moist, TOPSOIL
																	SILTY CLAY WITH SAND, high plasticity, brown, some rounded and angular cobbles, moist, RESIDUAL
· 0.5																сн	
														*************		XW-DW	WEATHERED ROCK, brown, low to medium strength, highly fractured, some round pieces, extremely weathered to distinctly weathered
1.0														*********	*********	2	BUCKET REFUSAL
																	TEST PIT TERMINATED AT 1.10 m
1.5																	
																	Cardno Bowler
5	ee			rev	iat	ion		or deta asis of	ils of		(0	Ca Bo	eve Wi	din ER	0	//38 Anzac Ave HLLCREST QLD 4118 PH (07) 3800 6446 -×X (07) 3800 0816

1

Clie Proj Loc	ec	t:	:	P	RO	POS	RIE CONSUL ED RESIDEN N STREET, RO	TIAL S	UE	DM	SION			Job No: 884	16		Hole No:	TP2
Pos	itic	on	R				SKETCH FR								Horizontal: 90°	-	Sheet: 1 of 1	
Mac	hin	ne	Ту	pe	: 5	Tor	nne Excavato	r						Excavation	the set of		Surface Elevation: Operator:	
							ons: 4.50 m V	VIDE							CARDNO BOW	LER PTY LTD	operator,	
Date	S	ta	ter	: 1	8/	4/09	Date	Compl	lete	ed: 8	3/4/09		L	ogged By:	SK		Date Logged: 8/4/09	
		D	rillir	g		Ê				1	T	1	1				Bate Loggea. 01403	
Depth (m)	Auger 'V' Bit	Auger 'TC' Bit	Washborn	Casing	Coring	Groundwater (m)	Sample o Field Tes	ar A	Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol		chara	Descriptic BOL. SOIL NAME, cleristics, colour, m ure, consistency, s	plasticity/particle	
													CL- Ci				, trace of gravel, grass root zone ace of fine to coarse grained gra	
).5													CI	SILTY CLAY	NITH SAND, high pia	sticity, brown, som	e rounded and angular cobbies,	moist
.0													СН	RESIDUAL			o oon deel and angolal coopies,	moist,
		-										*****		WEATHERED extremely wea	ROCK, brown, low to thered to distinctly we	medium strength,	highly fractured, some round pir	eces,
.5-									-			к ж ж к ж ж к	- 1	BUCKET REF				
Se			revi	Btic	ons		r details of sis of			>	Car Bow	rdino LER	7/9 HI Ph	ardno Bowler 98 Anzac Ave LLCREST QL 1: (07) 3800 VX: (07) 3800	6446			

A C L R R R 1

1000

Clier Proje Loca	ect	t:		P	RC	POSE	RIE CONSULTING ED RESIDENTIAL S STREET, ROCKH	SUB	DIVI	SION			No: 8846	Hole No: TP Sheet: 1 of 1
_	-	-			107		SKETCH FIGURE		1.01				ob No: 8846 ngle from Horizontal: 90°	Surface Elevation:
							ne Excavator						xcavation Method:	Operator:
xca	Va	ati	on	Di	me	ension	ns: 4.50 m WIDE						ontractor: CARDNO BOWLER PT	and the second
Date	S	tar	te	d :	8	4/09	Date Comp	lete	d: 8	4/09		L	ogged By: SK	Date Logged: 8/4/09
		D	rilli	ng		Ē				-		o		
Depth (m)	Auger V' Bit	Auger TC' Bil	Washbore	Casing	Coring	Groundwater (m)	Sample or Field Test	Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	(SYMBOL, SOI characteristics,	Jescription IL NAME, plasticity/particle colour, minor components, istency, structure, ORIGIN)
												CL- CI	SI:TY CLAY, low to intermediate plasticity, rool zone, moist TOPSOIL	dark grey, trace of gravel, mixed with cobbles, gras
													SILTY CLAY, intermediate plasticity, orange cobbles, moist. RESIDUAL	s/brown, fine to coarse grained gravel, some
0.5				-								CI		
						-								
1.0											*****************	X X X X X X X X X X X X X X X X X X X	WEATHERED ROCK, brown, low to mediul extremely weathered to distinctly weathered	m strength, highly fractured, some round pieces, d
											XXX	XW-		
1.5													BUCKET REFUSAL TEST PIT TERMINATED AT 150 m	
5	See			ev	alid		for details of assis of s	(D) Ca Bo	ardı WLEF		Cardno Bowler 7/96 Anzac Ave HILLCREST OLD 4118 PH: (07) 3800 6446 FAX: (07) 3800 0816	

Clie Proj Loc	ati	t: on	82	f	PR(RM	OSE AN	D RESIDEN	ITIAL I	AMI	BDM	ISION			Job No: 8846	Hole No: TP
				EF	EF	25	TE	SKETCH F	GURE						Angle from Horizontal: 90°	Sheet: 1 of 1 Surface Elevation:
Mac	:hi	ne	Ty	/pe	: :	5 7	onn	e Excavato	or				_		Excavation Method:	Operator:
Date								s: 4.50 m		1.4					Contractor: CARDNO BOWLER PT	TYLTD
Pare	T		nili		0	<u> </u>		Date	Comp		a: 1	8/4/09			Logged By: SK	Date Logged: 8/4/09
Depth (m)	Auger V Bit	Auper 'TC' Bit	-	-	Coring	Groundwater (m)		Sample o Field Te		Recovered	DCP	RL (m AHD)	Graphic	USCS Symbol	(SYMBOL, SC characteristics moisture, cons	Description DL NAME, plasticity/particle , colour, minor components, sistency, structure, ORIGIN)
														da	SE TY CLAY, low to intermediate plasticity, zone, moist, TOPSOL	, dark grey, trace of gravel, mixed with cobbles, grass
0.5														СН	SILTY CLAY WITH SAND AND GRAVEL, h Io coarse grained gravel, moist, RESIDUAL	igh plasticity, mixed with cobbles, orange/brown, fine
													********************************	XW-	WEATHERED ROCK, brown, extremely low to distinctly weathered	I to medium strength, some round pieces extremely
1.0													**************************************		BUCKET REFUSAL TEST PIT TERMINATED AT 1.10 m	
.5																
See	e Si a	land	evi	atic	ns	ats & t ion	asis	stails of of				Car Bow	dni		irdno Bowler 36 Anzac Ave LLCREST OLD 4118 t. (07) 3800 6446	

Clier Proje Loca	ect	t:		PR	0	POSE	RIE CONSULTING ED RESIDENTIAL STREET, ROCKH	SUB	DIVI	SION				Hole No: TP
							SKETCH FIGURE		10	·			ob No: 8846 ngle from Horizontal: 90°	Sheet: 1 of 1 Surface Elevation:
	-	-	-	-	-		ne Excavator						xcavation Method:	Operator:
xca	va	atic	n I	Din	nei	nsloi	ns: 4.50 m WIDE					C	ontractor: CARDNO BOWLER PTY L	TD
Date	S	tar	tec	:	8/4	4/09	Date Com	plete	d: 8	4/09		L	ogged By: SK	Date Logged: 8/4/09
		D	illin	9	T	Ê						5		
Depth (m)	Auger V* Bit	Auger TC Bit	Washbore	Casing	Conng	Groundwater (m)	Sample or Field Test	Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	(SYMBOL, SOIL N characteristics, col	cription IAME, plasticity/particle our, minor components, ncy, structure, ORIGIN)
												сн	SILTY CLAY, high plasticity, dark grey, moist, v	with gravel, grass root zone, moist, TOPSOIL
													SILTY CLAY, intermediate plasticity, red/orang grained gravel, moist, RESIDUAL	a, mixed with weathered rock, fine to coarse
0.5												CI		
													WEATHERED ROCK, fine grained, brown/grey	, medium to high strength, highly fractured,
1.0											***************************************	DW	dislinctly weathered	
											XXXX		BUCKET REFUSAL TEST PIT TERMINATED AT 1.30 m	
1.5														
9	iee			via	lion		or details of asis of		5	Ca Bo	win	Ø	Cardho Bowler /98 Anzac Ave HLLCREST QLD 4118 PH (07) 3800 6446 AX (07) 3800 0816	

1

1

Ţ

]

Ţ

Ĩ

Proj Loca	atic	n:		PR GE	OP RN	IRTRI OSEL AN S	TRE	SIDI ET,	ROC	AL S	AMI	DIV	ISION	1		Job No: 884	16							TP
			RE	FE	RS	ITE S	KET	СН	FIGL						_	Angle from	Contraction of the second second second	al: 90°			Sh Surface	eet: 1 Elevat		
						onne										Excavation	Method:			(Operato			
Date						sions	: 4.				1.1					Contractor:		O BOWL	ER PTY	LTD				
Date	-	-	-	-	-			na	te Ci	omp	ete	d;	B/4/0		- 1	Logged By:	SK			I	Date Lo	gged: I	B/4/09	
Depth (m)	Auger 'V' Bit	Washbure Bit	T	Coring	Groundwater (m)			ampli ield 1			Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	5 m		charact	Des IOL, SOIL N eristics, col re, consiste	lour, min	or compor	ents.		
															CI	SILTY CLAY TOPSOIL	, Intermedia	le plasticity	, dark grey,	, moist, n	with grave	, grass ro	ol zone, m	noist.
														1	CI	SILTY CLAY	intermedial	le plasticity,	, dark grey,	moist, v	vith gravel	, some gr	ess rool, M	ATURAL
0.5															CI	SILTY CLAY	intermediat	e plasticity,	red/orange	e, fine to	coarse gra	ained grav	el, RESID	UAL
																CLAYEY SAN	ID, fine grain	ned, pale br	rown, low p	lasticity,	moist, RE	SIDUAL		
1.0															sc	Tending to we	athered rock	¢						
														* * * * * * * * * * * * * * * * * * * *	KW- DW	WEATHERED distinctly weat	ROCK (TUF	F7), fine to	medium gi	rained, w	ery low to	low streng	gth, extrem	nely to
.5														x x x x x x x x x x x x		NEAR BUCKE TEST PIT TERI	REFUSAL AINATED AT	Γ 1.50 m						
See		brev	iati	ons		for del vasis c s		đ		(1	>	Сал Вои	raina	7/9 HI	ardno Bowler 98 Anzac Ave LLCREST QLE 1: (07) 3800 6	04118							

1 5

(Lange

Clier Proje Loca	ect			PF	20	POS	RIE CONSULTI ED RESIDENTIA STREET, ROC	L SU	BDI	VISION				ab No. 0946	Hole No: TP
	_			-	-	-	SKETCH FIGU							ob No: 8846 Angle from Horizontal: 90°	Sheet: 1 of 1 Surface Elevation:
				_			ne Excavator							xcavation Method:	Operator:
			-	-	-		ns: 4.50 m WID							Contractor: CARDNO BOWLER PTY LTI	
Date			-	-	8/	4/09	Date Co	mple	ted:	8/4/09	-		L	ogged By: SK	Date Logged: 8/4/09
_	-	Dri	-	-	4	Groundwater (m)		.		6			R	Deser	ation.
Depth (m)	ĩ	ā	2	_		ater	Sample or	Possing C		RL (m AHD)		Graphic Log	USCS Symbol	Oescrip (SYMBOL, SOIL NAM	E, plasticity/particle
Dept	er V	L 1	DUS	LISE		vpur	Field Test					Gra	CS	characteristics, colour moisture, consistency	, minor components, , structure, ORIGIN)
3	Auger V" Bit	Auge	PAN			Grot				R			ns		
	-	+	+	+	+	-			+		h	111	+-	SILTY CLAY, high plasticity, dark grey, grass root	ZONE MOISI TOPSOIL
1		1	ł										СН		
													-	SILTY CLAY, high plasticity, dark grey, moist, NAT	
			1												
										í			Сн		
	1												-		
														SILTY CLAY WITH SAND, high plasticity, red/brow	in, fine grained sand, moist, NATURAL
		1													
													Сн		
0.5															
									1						
		1													
			1											SILTY CLAY WITH SAND, high plasticity, brown, fi	ne grained sand, moist, NATURAL
				1									СН		
		1	1												
			1												
												P	1	SILTY CLAYEY SAND, fine to medium grained, bro	own, moist RESIDUAL
1.0											E		1		
1.0												d'	sc-		
											12	1	SM		
											12	1			
		ĺ									12	12			
			-								1000	××		WEATHERED ROCK (TUFF), fine to medium grain distinctly weathered	ed, very low to low strength, extremely to
											x		2	ologically weathered	
		1									××	×	×xw-		
		-	1								×	×	DW		
			-								××				
			1		1						××				
1.5	T		T	1	T			1		1	1		1	NEAR BUCKET REFUSAL TEST PIT TERMINATED AT 1.50 m	1999 - Contractor Contractor - 1996
			1												
			ł												
			1												
			ĺ												
				1											
			1												
		1	1	1_	1_				1	1	1				
S							or details of	1	PR	n n		, de la		Cardno Bowler /98 Anzac Ave	
		aot				ptions	asis of	6	4) Ga Bo	NAN NAN			ILLCREST QLD 4118	
										00		-TI	f	러 (07) 3800 6446 AX: (07) 3800 0816	

1 ľ 100

Clie Proj Loci	ect	t:		PI	RO	PC	RTR DSEI) re	SIL)Eh	ΠV	AL.	SU	BD	NI	SIO	S					Hole No: TP8
Pos	itio	n:														-	-				-	bb No: 8846 Sheet: 1 of 1 ngle from Horizontal: 90° Surface Elevation:
Mac															_						-	cavation Method: Operator:
Exca								: 4	50	m١	VID	E					-				-	ontractor: CARDNO BOWLER PTY LTD
Date	S	tar	tec	1:	8/	4/(9		D	ate	Co	mp	le	led	: 8	3/4/	09					ogged By: SK Date Logged: 8/4/09
Depth (m)	Auger V Bit	-	Washbore	-	Coring	Groundwater (m)			Sam Field				Barmorad	0000000	DCP		KL (M AHU)	Graphic	Log	USCS Symbol		Description (SYMBOL, SOL NAME, plasticity/particle charactenstics, colour, minor components, moisture, consistency, structure, ORIGIN)
	4	¥				0														CI		SILTY CLAY, intermediate plasticity, mixed with weathered rock, dark grey, moist, TOPSOIL SILTY CLAY, intermediate plasticity, mixed with weathered rock, dark grey, moist, COLLUVIJM?
0.5																				CI		SILTY CLAY, intermediate plasticity, with sand and gravel, mixed with weathered rock, moist, COLLUV/UM?
10																				сн		SILTY CLAY WITH SAND, high plasticity, brown, fine grained sand, moist, RESIDUAL
1.0		and a second																		sc		CLAYEY SAND, fine to medium grained, brown, moist, RESIDUAL
																	* * * *		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	w- w	V d	WEATHERED ROCK (TUFF), fine to medium grained, very low to low strength, extremely to islancity weathered
1.5																						UCKET REFUSAL EST PIT TERMINATED AT 1.40 m
Se	e S B	tan ibbr	evi	atic	ns	ets & t tion	for de basis s	etails of	of			(Page 1)	Ca Bo	ar W	ndr LER	10	H P	/98 ILL H:	dno Bowler 8 Anzac Ave LCREST OLD 4118 (07) 3800 6446 < (07) 3800 0816

Í 1

Clier Proje Loca	ect		F	RC	POS	RIE CONSULTING ED RESIDENTIAL S I STREET, ROCKH	SUB	DIVI	SION			ah No: 8946	Hole No: TP
_						SKETCH FIGURE						ob No: 8846 Angle from Horizontal: 90°	Sheet: 1 of 1 Surface Elevation:
Mac	hin	e T	ype	e: (Ton	ne Excavator					E	xcavation Method:	Operator:
						ns: 4.50 m WIDE						Contractor: CARDNO BOWLER PTY	the second se
Date	1			-	4/09	Date Comp	lete	ed: 8	4/09	7	1	ogged By: SK	Date Logged: 8/4/09
Depth (m)	-	Auger TC' Bit 0	-		Groundwater (m)	Sample or Field Test	Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	(SYMBOL, SOIL characteristics, c	escription NAME, plasticity/particle olour, minor components, tency, structure, ORIGIN;
-		1									CI	SILTY CLAY, Intermediate plasticity, mixed w	vith weathered tock, dark grey, moist, TOPSOIL
											CI	SILTY CLAY, Intermediate plasticity, mixed w	rith weathered rock, dark grey, moist, NATURAL
										× × × × × × × ×	××××	WEATHERED ROCK (TUFF), low to medium	strength, extremely to distinctly weathered tuff
										× × × × × × × ×	×XW- × DW ×		
0.5	1	1								××	×	BUCKET REFUSAL TEST PIT TERMINATED AT 0.50 m	
1.0													
1.5													
Se			evie	ation	eets fo			0	Ca	rdn MLER	10 F	ardno Bowler /98 Anzac Ave ILLCREST QLD 4118 H (07) 3800 6446 AX: (07) 3800 0816	

The second I The second Second Second T I J The second

TEST	PIT	LOG	SHEET

Cile Proj Loc Pos	ecati	it:):		GE	R	POSE	RIE CONSUL D RESIDEN STREET, RC SKETCH FIC	TIAL S	AMI	BDIVI	SION			Job No: 8846 Angle from Horizontal: 90°	Hole No: TP1(Sheet: 1 of 1
Mac	hi	ne	T	yp	e:	5	Tonn	e Excavator	r					1	Excavation Method:	Surface Elevation: Operator:
Date								s: 4.50 m W							Contractor: CARDNO BOWLER	PTYLTD
Dure	T		Drill	-	-	T	T	Date	comp	lete		14/09	1		ogged By: SK	Date Logged: 8/4/09
Depth (m)	Auger V' Bit	Auger TC' Bit	-	-	Conno	6	Groundwater (m)	Sample o Field Test		Recovered	DCP	RL (m AHD)	Graphic Loo	USCS Symbol	(SYMBOL, characteristi moisture, cr	Description SOIL NAME, plasticity/particle ics, colour, minor components, onsistency, structure, ORIGIN)
														сн	SILTY CLAY, high plasticity, with sand a sand and gravel, grass root zone, moist,	ind gravel, some cobbles, brown, fine to coarse grained TOPSOIL
														сн	SILTY CLAY, high plasticity, with sand a sand and gravel, moist, NATURAL	nd gravel, some cobbles, brown, fine to coarse grained
0.5													X X X X X		WEATHERED ROCK, fine grained, med weathered rock, extremely to distinctly	ium to high strength, highly fractured, some round
													IRARARARARARARARARARARARA	XW- DW		
_	+		-										<u> </u>		BUCKET REFUSAL TEST PIT TERMINATED AT 0.80 m	
1.0																
5																
Sei	e S	abb	re)	nat	ion	is &	s for d basis	letails of s of	(Car Bow	rdm LER	7/5 Hill Ph	rdno Bowier 8 Anzac Ave LCREST QLD 4118 + (07) 3800 6446 X: (07) 3800 0816	

[Ì

Proje Loca							D RESIDI						J	bb No: 8846	Hole No: TP1 Sheet: 1 of 1
				-			SKETCH						-	ngle from Horizontal: 90°	Surface Elevation:
							e Excava							cavation Method:	Operator:
-	-	_	-	_			s: 4.50 m		-1-1		14/00			ontractor: CARDNO BOWLER PTY	
Date			-		1	-	Da	te Com	piete	d: 8	14/09			ogged By: SK	Date Logged: 8/4/09
Depth (m)	Auger V' Bit	Washhore	-	1	Gmundwater (m)		Sampl Field		Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	(SYMBOL SO)L1 characteristics.co	scription NAME, plasticity/particle vlour, minor components, ency, structure, ORIGIN)
						1			+				CI	SILTY CLAY, intermediate plasticity, brown, gr	rass root zone, moist, TOPSOIL
													sc	CLAYEY SAND, fine to medium grained, som RESIDUAL	e wealhered rock fragments, brown, moisi,
												*********	XW-	WEATHERED ROCK, fine grained, very low to weathered	o medium strength, extremely to distinctly
0.5												NURSES STREET STRE	DW		
												2.6.1		BUCKET REFUSAL TEST PIT TERMINATED AT 0.70 m	
1.0															
1.5															
s							e details of		6	-	Ca	urdn WLER		iardno Bowler /98 Anzac Ave NLICREST QLD 4118	

100 and a (Inclusion) and and The second

Clie Proj Loc	jec: ati	l: on:		GE	RN	OSED R	ESIDENTI	CKHA	MP	DIVIS	ION			Job No: 8846	Hole No: TP12 Sheet: 1 of 1
Pos	itic	n:	RE	FE	RS	ITE SKE	TCH FIGI	URE 1	1					Angle from Horizontal: 90°	Surface Elevation:
Mac	nir	e 1	y y	e:	51	onne Ex	cavator	DE					Ĩ	Excavation Method:	Operator:
Date							.50 m WI		-1-	1. 01	100		(Contractor: CARDNO BOWLER PT	TYLTD
	T		illin	-	1		Date C	ompl	etec	1: 8/4	+/09	1		Logged By: SK	Date Logged: 8/4/09
Depth (m)	Auger V Bit	-	-	Coring	Groundwiter (m)		Sample or Field Test		Recovered	DCP	RL (m AHD)	Graphic Log	USCS Symbol	(SYMBOL, SO characleristics, moisture.cons	Description IL NAME, plasticity/particle colour, minor components, istency, structure, ORIGIN)
													С	SILTY CLAY, intermediate plasticity, brown	, grass root zone, moist, TOPSOIL
													СІ	SILTY CLAY, intermediate plasticity, brown	, moist, NATURAL
												******		WEATHERED ROCK, fine grained, very low weathered	r to medium strength, extremely to distinctly
0.5												**********	xw- Dw		
												XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		BUCKET REFUSAL	
1.0														TEST PIT TERMINATED AT 0.80 m	
.5															
														1	
See		bre	viat	ions		for details basis of s	of	6	1) C B	ar SW1	dno LER	7/9 HIL PH	rdno Bowler 8 Anzec Ave LCREST QLD 4118 (07) 3800 6446 X: (07) 3800 0816	

Annex B

No.

Hazard Rating Assessment

LANDSLIDE HAZARD

MACGREGOR & TAYLOR

Analysis No.:

TP8

М

0.8

LANDSLIDE FREQUENCY ANALYSIS

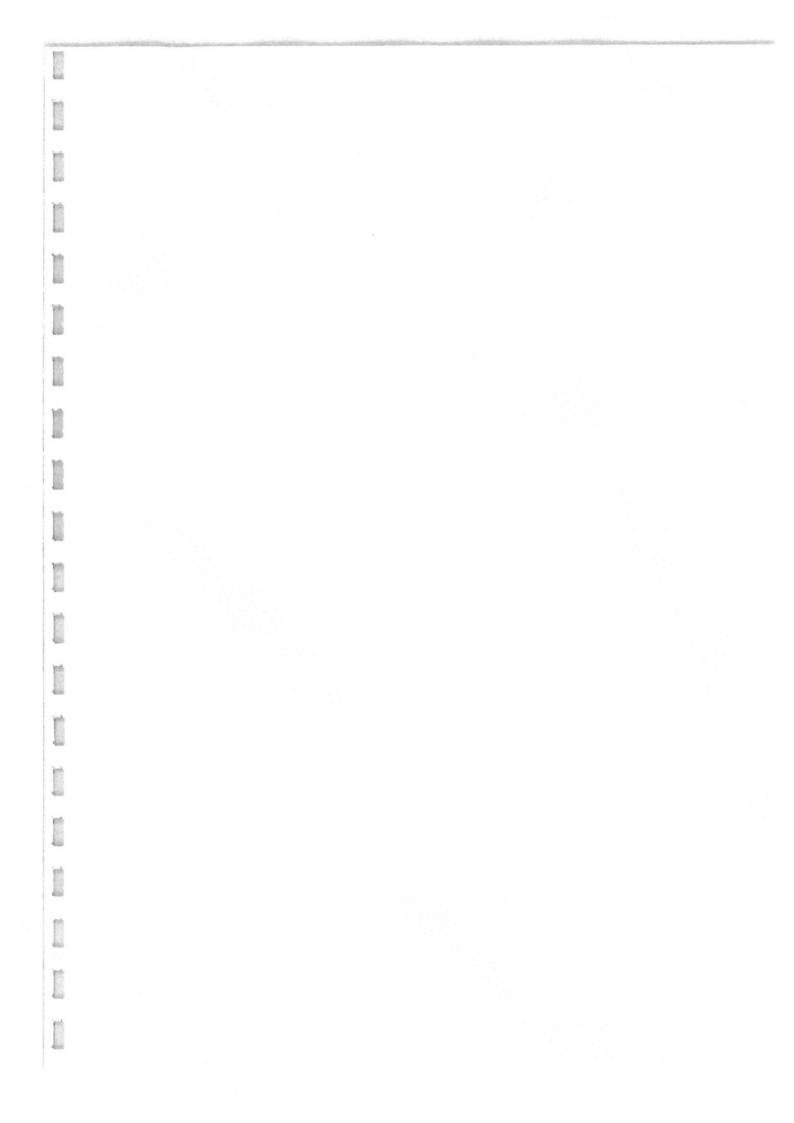
NATURAL SHALLOW LANDSLIDES

LOCATION:

Site No. Site name:

More than 45 degrees

1	Basic Frequency			6	Concentration of surface water		
2	Slope Angle			Site		Level	Factor
Site	7			L	Ridge	L	0.7
		Level	Factor		Crest	M	0.8
	Less than 5 degrees		0.1		Upper slope		
	Between 5 and 15 degrees	M				M	0.9
х	Between 15 and 30 degrees		0.5		Mid slope	H	1.2
	States and SU degrees	M	0.8	X	Lower slope	U	1.5
	Between 30 and 45 degrees	н	1.2		the second se	n	13
	h for all and h						


3	Slope Shape			-	r		
	•			Sit	1	Level	Factor
Site	7			x	None apparent	L	0.7
- Alexandress		Level	Factor		Minor moistness	М	0.9
	Crest or ridge	L	0.7		Generally wet	Н	1.5
	Planar	M	0.9		Surface springs		1.2
x	Convex	М	0.9		I	VH	3
	Concave	U	1.6				

4 Site geology			Site	e	Level	Factor
Site			X	No sign of instability	L	0.5
Volcanic rock	Level	Factor		Trees bent	Н	1.5
	H	1.1		Minor irregularity	VH	2
X Sedimentary rock	M	1		Major irregularity	VH	5
Low grade metamorphic rock	M	1		Scarps	VH	10
High grade metamorphic rock	L	0.9			1	10
Granitic rock	M	1		Summary		

5 Material strength			2	Slope Angle	E
ite			3	Slope Shape	. 10
	Level	Factor	4	Site geology	1
Rock at surface	VL	0.1		Material strength	1
Residual soil < 1 m deep	L	0.5		Concentration of surface water	H
Residual soil 1-3 m deep	M	0.9		Evidence of groundwater	
Residual soil >3 m deep	Н	1.5		Evidence of instability	1
Colluvial soil < 1 m deep	Н	1.5	0	evidence of instability	C
Colluvial soil 1-3 m deep	VH	2	9	Relative Frequency (2131415161718)	0
Colluvial soil > 3 m deep	VH	4		(2131415101/18)	Ľ
Fill (slope regrading)	VH	5		Site Frequency (1 x 9)	Г

H 1.5 8 Evidence of instability

7 Evidence of groundwater

LANDSLIDE HAZARD

MACGREGOR & TAYLOR

Analysis No.

TP9

Factor 0.7 0.9 1.5 3

LANDSLIDE FREQUENCY ANALYSIS

NATURAL SHALLOW LANDSLIDES

LOCATION:

Site No. Site name:

1 Basic Frequency

6 Concentration of surface water

2 Slope Angle

	Slope Angle			Sit		Leve	Factor
Site]			1	Ridge	L	0.7
	Kanada and A	Level	Factor		Crest	M	0.8
	Less than 5 degrees		0.1		Upper slope		1
	Between 5 and 15 degrees	M	0.5		Mid slope	M	0.9
х	Between 15 and 30 degrees	M	0.8	11		Н	1.2
	Between 30 and 45 degrees				Lower slope	H	1.5
		Н	1.2				
	More than 45 degrees	M	0.8	7	Evidence of groundwater		

3 Sinne Shan

5	Stope Shape			Site		Leve	
Site	7			x	None apparent	Level	
Unic		Level	Factor		Minor moistness	M	
	Crest or ridge	L	0.7		Generally wet		
	Planar	M	0.9		Surface springs	H	
X	Convex	M	0.9	-		VH	
	Concave	Н	15	8	Fridance of too to buy		

4 Site geology

Volcanic rock X Sedimentary rock

Site

11 1.5 8 Evidence of instability

Site geology			Site		Level	Factor
			x	No sign of instability	L	0.5
Volcanic rock		Factor	-	Trees bent	Н	1.5
	H	1.1		Minor irregularity	VH	2
Sedimentary rock	M	1		Major irregularity		
Low grade metamorphic rock	M	1		Scarps	VH	5
High grade metamorphic rock	L	0.9	-	polarps	VH	10
Granitic rock	M	1		Summary		

Summary

5 Material strength			2 Slope Angle	Factor 0.8
Site			3 Slope Shape	0.9
and the second s	Level	Factor	4 Site geology	1.0
Rock at surface	VL	0.1	5 Material strength	0.5
residual soil < 1 m deep	L	0.5	6 Concentration of surface water	
Residual soil 1-3 m deep	M	0.9		1.5
Residual soil >3 m deep	Н	1.5	7 Evidence of groundwater	0.7
Colluvial soil < 1 m deep	н	1.5	8 Evidence of instability	0.5
Colluvial soil 1-3 m deep	VH	2	9 Belative Fragman (2-2-1-5-(5 0)	
Colluvial soil > 3 m deep	VH	4	9 Relative Frequency (2131415161718)	0.189
Fill (slope regrading)	VH	5	Site Frequency (1 x 9)	-

